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The nonlinear optics of gigawatt power, 10 µm, 3 and 200 ps long pulses propagating in gases 

and semiconductors has been studied experimentally and numerically. In this work, the 

development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments 

using peak intensities in the range of 1 – 10 GW/cm2, approximately one thousand times greater 

than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region.  

The first measurements of the nonlinear refractive index of the atomic and molecular gases 

Kr, Xe, N2, O2 and the air at a wavelength near 10 µm were accomplished by studying the four-

wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate 

that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the 

molecular contribution to the nonlinear refractive index.  
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Supercontinuum (SC) generation covering the infrared spectral range, from 2 – 20 µm, was 

realized by propagating 3 ps, 10 µm pulses in an approximately 7 cm long, Cr-doped GaAs 

crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the 

generation of such broadband light in GaAs. The propagation of 3 ps, 10 µm pulses in GaAs was 

studied numerically by solving the Generalized Nonlinear Schrödinger Equation (GNLSE). 

These simulations, combined with analytic estimates, were used to determine that stimulated 

Raman scattering combined with a modulational instability caused by the propagation of intense 

LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the 

SC generation process.  

The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used 

to generate a broadband FWM spectrum that was compressed by the negative group velocity 

dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a 

wavelength near 10 µm. Experimental FWM spectra obtained using 165 and 882 GHz beat-

waves revealed an unexpected and rapid decrease in the FWM yield that was not predicted by the 

GNLSE model that accounts for third-order nonlinearities alone. These results suggest that the 

effective nonlinear refractive index of GaAs, having formidable second- and third-order 

susceptibilities, may be altered by quadratic nonlinearities.   
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Chapter 1 

Introduction 

With the advent of the pulsed laser in the 1960s, it became possible to generate focused 

intensities on the order of 1 MW/cm2 corresponding to transverse electric fields of ~ 3x106 V/m. 

For such strong fields, the propagation of radiation through a transparent dielectric can no longer 

be described by a polarizability that scales linearly with the applied field. As the driving field 

strength becomes a sufficient fraction of the field that binds the electron to the nucleus, the 

response of the electrons in the dielectric becomes anharmonic.  The coupling of aharmonic 

electron motion to the driving field can manifest as a myriad of nonlinear phenomena such as 

harmonic generation, self-focusing and self-phase modulation. In order to describe such laser-

matter interactions, a new field of optics emerged known as nonlinear optics.  

Since the first observation of second harmonic generation by Franken et. al. in 1961 [1], the 

usefulness of nonlinear optics as a method to coherently change the wavelength of laser light has 

motivated extensive research on the subject.  Using nonlinear optics for bandwidth manipulation, 

scientists have been able to broaden the spectrum of a laser pulse in order to generate so called 

“white-light” or supercontinuum [2, 3] for applications in spectroscopy and for the production of 

ultrafast optical pulses [4, 5].  As a tool for optical frequency conversion, researchers have used 

nonlinear optics to convert laser light from 1 µm to high-frequency X-rays [6, 7] down to the 

low-frequency terahertz range [8, 9].  Another important application of nonlinear optics is 

ultrashort pulse characterization by a variety of methods such as auto-correlation and frequency-

resolved optical gating that all rely upon optical harmonic generation [10, 11].  
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The vast majority of the aforementioned studies have been performed in the range of 0.4 – 1 

µm where high-power lasers are commercially available.  Applications would benefit, however, 

from extending these studies to the middle infrared (mid-IR) spectral range.  The range from 2 – 

20 µm, the so-called “molecular fingerprint region”, is of particular importance since these 

frequencies coincide with the rotational-vibrational resonances of most simple molecules. For the 

nonlinear optics of gases, the use of mid-IR light is advantageous since radiation in this range 

can propagate in the atmosphere with low loss.  On the other hand, the mid-IR nonlinear optics 

of solids is incredibly interesting since the solids with the highest nonlinearities are only 

transparent in the mid-IR.  For example, bulk semiconductors such as GaAs and CdTe have a 

nonlinear response one thousand times larger than that of common visible and near infrared 

materials such as glass or sapphire.  These bulk semiconductors also exhibit low optical loss, a 

spectrally flat transmission curve and are available in large sizes making them ideal media for 

nonlinear optical applications.  

Recently, intense mid-IR light has been used to generate X-ray radiation by high harmonic 

generation (HHG) since the cut-off of the HHG spectrum scales as Iλ2, where I is the intensity 

and λ is the wavelength of the drive laser. Here, 3.9 µm radiation focused to an intensity of 1014 

W/cm2 has been used to generate ~ 1 keV X-ray photons in gas-filled waveguides [12]. There is 

also burgeoning interest in the generation of such HHG spectra in solids where mid-IR drive 

lasers must be used to avoid irreversible damage to the dielectric. For this application, ~ 3 µm 

light focused to an intensity of 1012 W/cm2 has been used for the generation of HHG photons in 

ZnO [13]. The growing interest in the interaction of intense mid-IR fields with gases and solids 

further motivates the need to study the nonlinear optical properties of these materials. 
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In this thesis, we present a series of experimental studies dedicated to the nonlinear optics of 

gases and semiconductors in the long-wave infrared (LWIR).  Experiments were carried out 

using a picosecond CO2 laser system at the UCLA Neptune laboratory that is capable of 

producing high-power, picosecond pulses with a central wavelength near 10 µm. For the work in 

this thesis, GW-class pulses at a pulse repetition rate of 1 Hz are focused to peak intensities of 1 

– 10 GW/cm2 to illicit optical nonlinearities in solids and gases. These intensities are several 

orders of magnitude higher than in previous studies yet still remain below the ionization 

threshold of the materials under investigation. The importance of this work is underscored by the 

fact that there is a lack of literature data for the nonlinearities of both gases and solids in the 

LWIR region, particularly for field strengths larger than 1 MW/cm2. The structure of the 

dissertation is as follows: Chapter 2 presents an introduction to the theory of nonlinear optics and 

a summary of important nonlinear optical phenomena that occur in both semiconductors and 

gases.  Chapter 2 also includes a description of the model used to numerically simulate the 

propagation of mid-IR light in nonlinear optical media along with a couple of instructive, sample 

simulations using this model. Chapter 3 describes the high-repetition rate, picosecond, CO2 

master-oscillator power-amplifier (MOPA) laser system at UCLA that enabled the experiments 

presented in this thesis. Chapter 4 describes experiments dedicated to the measurement of the 

third-order nonlinearity of gases by four-wave mixing while Chapter 5 and 6 details experiments 

on supercontinuum generation and nonlinear pulse compression of intense 10 µm light in GaAs, 

respectively.   
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Chapter 2 

Introduction to Nonlinear Optics 

Section 2.1 The nonlinear polarizability  

This thesis is concerned with nonlinear optical phenomena in gases and semiconductors driven 

by gigawatt power, 10 µm laser pulses having a temporal pulse length of 200 and 3 ps.  As such, 

the optical phenomena of four-wave mixing, self-phase modulation, dispersion, pulse 

compression, harmonic generation, Raman scattering related to optical phonons in solids and 

rotational-vibration motion in molecular gases, and self-focusing will be important. This chapter 

is dedicated to reviewing these phenomena in some detail. Although much of the material 

presented in this chapter is tutorial, the language and definitions introduced here are important to 

communicate the novel nonlinear optical effects covered in this dissertation. For example, the 

material presented in Appendix D, describing the contribution of cascaded difference frequency 

mixing to the effective third-order susceptibility of semiconductors, would not be understandable 

if not for the content of this chapter.     

  Nonlinear optical effects are commonly modeled by a perturbative expansion of the 

macroscopic polarizability. In the frequency domain this can be written as: 

                 𝑃 𝑟,𝜔 = 𝜖! 𝜒 ! ⋅   𝐸 + 𝜒 ! ⋅ 𝐸𝐸 + 𝜒 ! ⋅ 𝐸𝐸𝐸 +⋯                   (2.1) 

Where 𝜖! is the permittivity of free space, 𝐸 is the electric field, and 𝜒(!) is the nth order 

susceptibility. In the most general case, these susceptibilities are complex valued tensors of order 

n. All materials have odd order susceptibilities but even order susceptibilities vanish in centro-

symmetric media such as gases and glass [1]. Since each term in Eq. 2.1 is much smaller than the 
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one that precedes it, the quadratic and cubic terms are the most important. The electric field can 

be expressed as: 

                                  𝐸 𝑟, 𝑡 = !
!
ℰ𝑒!!!!!!  !⋅! + 𝑐. 𝑐. 𝑒.                    (2.2) 

Where  𝑘 is the wave number and 𝜔!  is the carrier frequency of the laser. The complex envelope 

is denoted by ℰ and 𝑒 represents a unit vector that points in the direction of the electric field. 

Note that a spatio-temporal envelope could be included within the complex envelope ℰ.  In the 

simple case described by Eq. 2.2, substitution of the electric field into Eq. 2.1 shows that the 

nonlinear polarizability oscillates at 2𝜔! and 3𝜔!  from the second and third order term, 

respectively. In a more complicated situation, such as a dual-frequency electric field 𝐸 𝑟, 𝑡 =

!
!
ℰ!𝑒!!!!!!  !!⋅! + ℰ!𝑒!!!!!!  !!⋅! + 𝑐. 𝑐. 𝑒, the nonlinear polarizability oscillates at all of the 

possible sum and difference frequencies.  This nonlinear polarizability gives rise to new 

frequencies of light as it acts as a source term in the nonlinear wave equation [2]: 

                 𝛻×𝛻×𝐸 𝑟,𝜔! − 𝜔!𝜇!𝜖 𝑘,𝜔! ⋅ 𝐸 𝑟,𝜔! = 𝜔!!𝜇!𝑃!" 𝑟,𝜔! .    (2.3) 

Where  𝜖 is the dielectric tensor of the medium and the index 𝑞 denotes a specific frequency 

contained within the nonlinear polarizability. The term 𝑃!" is the nonlinear polarizability that is 

defined as: 

                         𝑃!" = 𝜖!(𝜒 ! ⋅ 𝐸𝐸 + 𝜒 ! ⋅ 𝐸𝐸𝐸 +⋯ ).              (2.4) 

To understand the physics of nonlinear frequency conversion it is useful to simplify Eq. 2.3 

under the conditions that the medium is isotropic, the slowly varying envelope approximation is 

valid and that the field only changes in the propagation direction, 𝑧. Under these three conditions 
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an ordinary differential equation for the evolution of the complex amplitude as a function of 

propagation distance can be derived [2]: 

  !
!"
ℰ(𝑧,𝜔!) ≈

!!!!!!!
!!!

𝑃!" 𝑧,𝜔! 𝑒!!!!!!!" !! !     (2.5) 

Through examination of Eq. 2.5, it is clear that any electromagnetic wave may be generated 

in a nonlinear medium so long as the frequency of the electromagnetic wave is present in the 

nonlinear polarizability. In practical situations, however, it is only those electromagnetic waves 

having frequencies and wave-numbers constants that satisfy the phase-matching conditions that 

are efficiently amplified. These conditions will be introduced and explained in the next section.  

Section 2.2: Three-wave mixing and phase matching 

To understand the basic physics of nonlinear optical mixing it is instructive to consider the 

simplest case of three-wave mixing — second harmonic generation (2ω = ω + ω).  It is 

customary in nonlinear optics to write the photon mixing equation into the argument of the 

susceptibility, for the case of second harmonic generation the nonlinear polarization takes the 

form: 

                    𝑃!" 𝑧 = !!
!
𝜒 ! 2𝜔 = 𝜔 + 𝜔 ℰ 𝜔 ℰ 𝜔 𝑒!! !"!! ! ! .   (2.6) 

Here we have neglected the tensor nature of the susceptibility to simplify this introduction. 

Substitution of Eq. 2.6 into Eq. 2.5 yields: 

     !
!"
ℰ 𝑧, 2𝜔 ≈ − !!!!!

!!(!!)
𝜖!𝜒 ! 2𝜔 = 𝜔 + 𝜔 ℰ 𝜔 ℰ 𝜔 𝑒!!"#$.                (2.7)    

Here 𝛥𝑘 is the phase mismatch between the fundamental field and the second harmonic, defined 

as: 
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   𝛥𝑘 = 2𝑘 𝜔 − 𝑘 2𝜔 .      (2.8) 

In the limit of weak depletion, Eq. 2.7 can be integrated to obtain the evolution of the amplitude 

of the second harmonic field as a function of propagation distance: 

  ℰ 𝑧, 2𝜔 = !!!!
!! !!

𝜖!𝜒 ! ℰ! 𝜔 !!!"#$!!
!"

     (2.9) 

Here we have dropped the photon mixing arguments in the susceptibility to simplify the notation. 

Equation 2.9 can be rearranged using trigonometric identities and expressed in terms of intensity 

by using the relationship 𝐼 𝜔 = !!!!(!)
!

ℰ 𝜔 ℰ∗ 𝜔  as: 

            𝐼 𝑧, 2𝜔 = !!! ! !

!!!!!!! ! ! !!
𝐼! 𝜔 𝑧!

!"#!!"#!   
!"#
!

!                    (2.10) 

Where 𝑛(𝜔) is the refractive index at frequency 𝜔.  The above equation shows that, if the phase-

mismatch is finite, the amplitude of the second harmonic field will undergo cycles of conversion 

and back conversion. In this case, it is useful to define the coherence length as the length in 

which the second harmonic conversion is at a maximum: 

                    𝑙!"! =
!
!"

       (2.11) 

Note that the coherence length corresponds to a phase shift of π radians. In practice, phase 

matching is typically accomplished by the use of birefringent crystals where the second 

harmonic is polarized orthogonal to the fundamental field. The above analysis can be generally 

applied for any three-wave mixing process such as difference frequency generation (DFG), sum 

frequency generation (SFG) and optical parametric amplification (OPA).  
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Section 2.3: Four-wave mixing  

The simplest third-order nonlinear optical effect is four-wave mixing (FWM). In the degenerate 

case, two pump photons with frequency with frequency 𝜔! annihilate to form sidebands with the 

photon conservation of energy argument 𝜔! + 𝜔! = 𝜔! + 𝜔!, as can be inferred from the 

spectrum in Fig. 2.1a.  Commonly, two pump waves are used to generate sidebands with a 

known frequency separation. This case of nondegenerate FWM is shown schematically in Fig. 

2.1b for which the photon conservation of energy argument is 𝜔! + 𝜔! = 𝜔! + 𝜔!.   This can be 

rearranged using 𝛥𝜔 = 𝜔! − 𝜔!  to obtain expressions for the sideband frequencies, 𝜔! = 2𝜔! −

𝜔! and 𝜔! = 2𝜔! − 𝜔!. The nonlinear polarizability for the low frequency sideband is: 

  𝑃!" 𝑧,𝜔! = !
!
𝜖!𝜒 ! 𝜔! = 2𝜔! − 𝜔! ℰ! 𝜔! ℰ∗ 𝜔! 𝑒! !!!! !! !! !! !! ! .   (2.12) 

Substitution of the above into Eq. 2.5 yields the amplitude equation for the sideband at angular 

frequency 𝜔!: 

                    !
!"
ℰ 𝑧,𝜔! ≈ − !!!!!!

!! !!
𝜖!

!
!
𝜒 ! ℰ! 𝜔! ℰ∗ 𝜔! 𝑒!!"#$.     (2.13) 

Here we have once again removed the photon mixing argument from the susceptibility for 

simplicity. The phase-mismatch for FWM is defined as 𝛥𝑘 = 2𝑘 𝜔! − 𝑘 𝜔! − 𝑘 𝜔! . In the 

absence of pump depletion we can integrate Eq. 2.13 with respect to z to derive the a formula for 

the evolution of the intensity of the low-frequency sideband as a function of propagation 

distance: 

 𝐼 𝑧,𝜔! = !
!

!
!!

! !!
!!!!! !! ! !! ! !!

!

𝐼! 𝜔! 𝐼 𝜔! 𝑧!
!"#!!"#!   
!"#
!

!                 (2.14)   
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As was the case with three-wave mixing, the sideband will undergo cycles of conversion and 

back-conversion if the phase-mismatch is finite.  The coherence length for FWM is also defined 

as 𝑙!"! =
!
!"

. 

 

 

Figure 2.1: Diagram depicting the spectrum for (a) degenerate and (b) non-degenerate FWM 

mixing.  Photon mixing arguments are presented below each spectrum.  

Section 2.4: Self-phase modulation and the nonlinear refractive index 

One of the most ubiquitous and important phenomena in the field of nonlinear optics is self-

phase modulation (SPM). The physics of SPM can be looked at as a special case of FWM in 

which all four waves are the same frequency. The nonlinear polarizability leading to SPM can be 

written as: 
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𝑃!" =
!
!
𝜖!𝜒 ! 𝜔 = 𝜔 − 𝜔 + 𝜔 ℰ 𝜔 ℰ∗(𝜔)ℰ 𝜔 exp 𝑖𝜔𝑡 − 𝑖𝑘 𝜔 𝑧     (2.15) 

Substitution of the above into Eq. 2.5 yields an expression for the derivative of the complex 

amplitude with respect to propagation distance: 

                        !
!"
ℰ 𝜔 = − !!!

! ! !!
!
!
𝜒 ! ℰ 𝜔 ℰ∗ 𝜔 ℰ 𝜔      (2.16) 

In this case, FWM is naturally phase-matched and the usual exponential factor (e.g., Eq. 2.13) 

becomes unity.  Equation 2.16 can be re-written using the definition of intensity as: 

                                    !
!"
ℰ 𝑧,𝜔 = − !"

!

!
!!

!

!! ! !!!
𝐼(𝜔)ℰ 𝑧,𝜔        (2.17) 

As can be inferred from the above, the result of this implicit phase-matching is that only the 

phase of the field is effected by the nonlinear response. In this case, the term 
!
!!

!

!! ! !!!
𝐼(𝜔) acts 

like a change to the linear index of refraction. The total index of refraction can then be written 

as: 

                                                       𝑛 = 𝑛! + 𝑛!𝐼(𝑡)        (2.18) 

Where 𝑛! is the linear refractive index and 𝐼 is the intensity of the light. The parameter 𝑛! is 

referred to as the nonlinear refractive index or the Kerr coefficient and is of utmost importance 

for describing nonlinear optical interactions.  The nonlinear index is defined as: 

                                                     𝑛! =
!
!!

!

!! ! !!!
        (2.19) 
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Figure 2.2: A plot of the electric field of an optical pulse before (blue) and after (green) is has 

been altered by SPM.  Plotted in red is the pulse’s instantaneous frequency. 

Self-phase modulation is a special case of FWM that results in time- and intensity-dependent 

phase changes. For a laser pulse with finite time duration, these nonlinear phase changes can lead 

to the generation of new frequencies in the vicinity of the laser pulse’s carrier frequency. To 

investigate changes to the instantaneous frequency we take the time derivative of the phase 

argument: 

                 𝜔!(𝑡) =
!
!"

𝜔!𝑡 − 𝑛! + 𝑛!𝐼 𝑡 𝑘!𝑧 = 𝜔! − 𝑛!𝑘!𝑧
!
!"
𝐼 𝑡       (2.20)    

Where 𝜔!(𝑡) is the instantaneous frequency of the laser pulse. As can be seen above, the 

spectrum of the pulse becomes red-shifted and blue-shifted during the rising and falling edge of 

the laser pulse, respectively. To visualize this process, Fig. 2.2 is a plot of the electric field from 

a laser pulse before and after it has undergone self-phase modulation. Plotted with the electric 
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field is a plot of the frequency shift across the pulse. It should be noted that SPM causes an 

increase of bandwidth but does not change the temporal pulse duration. Instead, the time-

bandwidth product of the pulse is increased as it develops a positive chirp, as can be seen in Fig. 

2.2. With additional dispersion, however, the bandwidth gained by SPM can be used to compress 

the pulse to a shorter temporal pulse length. 

A physical interpretation of SPM can be gained by imagining the energy flow between the 

laser field and the medium. During the rising edge of the laser pulse, energy moves from the 

laser field to the medium’s polarizability thus red-shifting these photons. During the falling edge 

of the pulse this same energy is being transferred back from the medium’s polarizability to the 

laser field, as a result these photons become blue-shifted.   

There is an important length scale associated with self-phase modulation. The nonlinear 

length is defined as: 

                  𝐿!" =
!

!!!!!
            (2.21)  

Where 𝑘! is the vacuum wave-number. Considering that the nonlinear phase shift accumulated 

from SPM after a length 𝐿  is 𝜙!" = 𝑘!𝑛!𝐼𝐿 =
!
!!"

, the nonlinear length has a nice physical 

interpretation. After traversing one nonlinear length, the laser pulse gains one radian of nonlinear 

phase. Under the assumption that the laser pulse is Gaussian in time, it is possible to calculate the 

maximum frequency shift generated via SPM.   Assuming that the intensity is of the form 

𝐼(𝑡) = 𝐼! exp−𝑡!/𝜏! then the nonlinear frequency shift after a length L is: 

                                                       𝛿𝜔 = !
!"
𝜙!" = − !!

!!
!
!!!

 .     (2.21) 
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An expression for the maximum frequency shift can be obtained by setting the derivative of 

equation 2.21 equal to zero. For a Gaussian, transform-limited pulse the maximum frequency 

shift is: 

                                                     𝛿𝜔!"# ≈ 𝛥𝜔!
!
!!"

                    (2.22) 

Where 𝛥𝜔! is the initial bandwidth of the laser pulse. Equation 2.22 allows one to conveniently 

estimate the amount of broadening achieved via SPM. For example, a Gaussian pulse will be 

spectrally broadened by a factor of three after traversing three nonlinear lengths and 

accumulating three radians of nonlinear phase.    

Let us calculate the nonlinear length for the 10 µm, 1 – 10 GW/cm2 laser pulses used for 

experiments described in this thesis. For semiconductors such as GaAs the nonlinear index is 

approximately 10-13 cm2/W and the nonlinear length is 1 – 10 mm.  For gases such as the air the 

nonlinear index is approximately 10-19 cm2/W corresponding to a nonlinear length of 1 – 10 km. 

Finally, it should be mentioned that an additional laser beam could be subjected to nonlinear 

phase changes generated from an intense laser pulse. In this process of cross-phase modulation 

(XPM) the nonlinear phase shift imparted to the probe is twice that imparted to the pump. This 

can be seen by the substitution of a dual-frequency electric field into the nonlinear polarizability 

(Eq. 2.4) 

Section 2.5 Self-focusing and laser filamentation 

There is a spatial analogue to SPM known as self-focusing. Since the total index of refraction 

varies according to 𝑛 = 𝑛! + 𝑛!𝐼, a laser beam that has a Gaussian distribution of intensity in 

space, I(r), will produce a refractive index perturbation that is shaped like a positive lens. This 
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lens will cause a focusing of the laser beam so long as the strength of the lens can overcome the 

natural diffraction of the laser beam. The threshold power at which the nonlinear lens balances 

diffraction is called the critical power of self-focusing and is calculated as [3]: 

                                                               𝑃!"#$ =
!.!!!!!
!!!!!!

.      (2.23) 

Equation 2.23 is derived assuming a balance between the nonlinear length, 𝐿!" = 𝑛!𝑘!𝐼 !!, 

and the diffractive or Rayleigh length 𝑧! =
!!!!!!

!
, where 𝑤! is the beam radius. This is why, for 

example, the threshold for self-focusing is based on the laser pulse’s power and not its intensity 

because both the nonlinear and diffractive lengths scale in direct proportion to the area of the 

beam. Another interesting aspect of Eq. 2.23 is that the critical power scales quadratically with 

laser wavelength. This arises because the nonlinear length is inversely proportional to the laser 

wavelength while the diffractive length is in direct proportion to wavelength.  

For the 10 µm laser pulses considered in this thesis, the critical power for self-focusing in 

semiconductors is approximately 5 MW. Gases such as air, however, have a nonlinear index 

close to 10-19 cm2/W that corresponds to a critical power of 1 TW.  

If a laser pulse’s power is above the threshold defined by Eq. 2.23 then the beam will focus at 

a finite distance within a nonlinear medium.  For a plane wave this distance can be estimated 

using [4]: 

                                                        𝑧!" =
!!!!!!!  / !

!
!!"#$

  !!
.                 (2.24) 

Where 𝑤! is the FWHM beam radius and P is the power of the laser pulse. As can be inferred 

from the above, if the laser’s power is exactly the critical power then the self-focusing distance is 
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infinite. When the laser’s power is many times the critical power then the beam tends to break up 

into a family of beamlets, each containing a critical power for self-focusing [4].   

Finally, it should be noted that the self-focusing of a high-power beam is eventually arrested 

by another nonlinear process. In most cases this arresting mechanism is the negative change to 

the refractive index that occurs because of photo-ionization or nonlinear loss [5, 6]. The change 

of the refractive index from plasma can be estimated from the dispersion relation for an 

electromagnetic wave in a plasma [7]: 

     𝛥𝑛 ≈ − !
!
!
!!
.        (2.25)  

 

Where N is the density of the plasma and 𝑁! is the critical plasma density defined by 𝑁! =

!!!!!!
!!

, where 𝑚 and 𝑒 are the mass and charge of the electron, respectively. It is possible for 

nonlinear self-focusing to be dynamically balanced by plasma-induced defocusing to produce a 

long channel of guided laser light in a regime known as laser filamentation [5].  

Section 2.6: Dispersion and soliton formation  

Aside from the nonlinear response itself, dispersion is the single most important phenomenon in 

all of nonlinear optics. The material’s dispersion is of paramount importance because it governs 

phase-matching and determines the relative velocity between the spectral components in a pulse 

of light. To understand the important aspects of a material’s dispersion it is useful to express 

wave-number 𝑘(𝜔) = !(!)!
!

, as a Taylor series expansion: 

                                     𝑘 𝜔 = 𝑘! + 𝑘! 𝜔 − 𝜔! + !
!
𝑘! 𝜔 − 𝜔! ! +⋯   (2.26) 
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Where 𝑘! =
!!! !
!!!

 and 𝜔! is the central frequency of the laser pulse. The reciprocal of 𝑘! is the 

group velocity given by: 

                           !"
!"
= 𝑣!!! =   

!
!
𝑛 𝜔 + 𝜔 !

!"
𝑛 𝜔 .    (2.27) 

Where 𝑣! is the group velocity that determines the speed at which the laser pulse propagates 

through a medium. The term in parenthesis is sometimes referred to as the group index 

𝑛!(𝜔) = 𝑛 𝜔 + 𝜔 !" !
!"

.  The second term in Eq. 2.26, 𝑘!, is responsible for group velocity 

dispersion (GVD): 

                                          !
!!

!!!
= !

!
2 !
!"
𝑛 𝜔 + 𝜔 !!

!!!
𝑛 𝜔 .    (2.28) 

The GVD term determines the relative velocity between different frequency components in a 

laser pulse and can be used to calculate the amount of temporal pulse broadening per unit length 

that can be expected when a short pulse traverses a transparent dielectric. The GVD coefficient 

can be positive or negative, determined by the concavity of the dispersion relation. A positive 

GVD term implies that red colors travel faster than blue colors and the opposite is true for a 

negative term. The dispersive length is a length scale upon which temporal pulse broadening 

occurs [8]: 

                                                              𝐿! =
!!!

!!
       (2.29) 

Where 𝜏! is the transform-limited pulse length. The temporal pulse broadening described above 

follows a law analogous to the evolution of the radius of a Gaussian beam: 
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             𝜏! 𝑧 = 𝜏!! 1+ !!

!!
!       (2.30) 

For the picosecond, 10 µm pulses considered in this thesis, the dispersion length is meter-

scale in GaAs having a GVD coefficient of ~ -1350 fs2/mm. For 10 µm pulses far away from the 

ultraviolet resonances common atomic and molecular gases, the dispersive length is practically 

infinite. 

Similar to SPM, the material’s GVD acts to create a frequency chirp across the laser pulse’s 

temporal pulse profile. If the material has negative GVD, however, this chirp can act to 

compensate the chirp created by the nonlinear response. Further, if the effect of negative GVD 

perfectly balances with the effect of SPM a soliton, a pulse that propagates in a nonlinear 

medium without changing shape, can be formed [8]. In most cases the chirp created by the 

nonlinearity is stronger than that created by GVD and the pulse will self-compress as it 

propagates in a nonlinear medium. The ratio of the dispersive and nonlinear length, 𝑁! =

𝐿!/𝐿!", is a useful parameter to categorize such nonlinear optical interactions. Here N is the so-

called soliton order for which N =1 implies solitonic propagation and N > 1 implies that the laser 

pulse is in a self-compression regime.  

In the self-compression regime, nonlinear pulse compression acts to increase the laser pulse’s 

intensity that, in turn, enhances the effect of SPM. This process may eventually lead to a 

modulational instability and the generation of supercontinuum or white-light.  Indeed, the 

majority of supercontinuum sources involve propagation in the negative GVD region of a 

nonlinear material for this reason. Finally, it should be noted that almost every dielectric that is 

transparent in the mid-IR exhibits negative GVD with the notable exceptions of germanium and 

tellurium. In the final section of this chapter we will present numerical simulations depicting the 
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propagation of intense 10 µm light in both germanium and gallium arsenide to show the 

differences in the nonlinear propagation of such pulses in materials exhibiting positive and 

negative GVD.                                                   

Section 2.7: Stimulated Raman Scattering 

Spontaneous Raman scattering refers to a physical process by which a photon is frequency 

downshifted via the excitation of a low frequency, optical phonon in a material. In a solid this 

mode is related to the phonon band and in molecular gases this mode is related to rotational-

vibrational transitions.  

 This process can be explained quantum mechanically as follows: a photon at frequency 𝜔! is 

incident upon a two-level system where the energy difference between the two states is 

𝛥𝐸 = ℏ𝛺!, where 𝛺! is the Raman frequency and ℏ is Planck’s constant divided by 2𝜋. The 

incident field causes excitation to a virtual level that exists ℏ𝜔! energy units above the initial 

state. If the system is initially in the lower level, then it may decay to the first excited state 

generating a photon at frequency 𝜔! = 𝜔! − 𝛺! as can be seen in the energy level diagram of 

Fig. 2.3. If, instead, the system is initially in the first excited state then the system may relax to 

the ground level thus emitting a new photon at frequency 𝜔!" = 𝜔! + 𝛺! . The lower frequency 

photon at 𝜔! is referred to as the Stokes frequency while the higher frequency photon at 𝜔!"  is 

referred to as the anti-Stokes frequency. It should be mentioned that the anti-Stokes component 

is typically much weaker than the Stokes component since, at thermal equilibrium, the 

population in the higher state is smaller than that of the lower state by a factor of exp −ℏ !!
!!!

, 

where 𝑘! is the Boltzmann constant and T is the temperature. 
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Figure 2.3: Energy level diagram of a two-level system depicting Raman scattering of an 

incident laser field at frequency 𝜔!. The Raman frequency is denoted by 𝛺!. 

In the case of stimulated Raman scattering, the Stokes field generated through spontaneous 

Raman scattering can beat with the fundamental field generating an intensity modulation at 

𝜔! − 𝜔! = 𝛺!. This intensity modulation can reinforce the Raman process leading to an 

instability and exponential gain for the Stokes light. Spontaneous Raman scattering is a rather 

weak process that scatters light in every direction but stimulated Raman scattering (SRS) can 

convert a large percentage of the incident light, collimated in the forward or backward direction.  

There are a variety of methods to model the SRS process. For the work in this dissertation 

SRS will be treated phenomenologically as a delayed part of the third-order nonlinearity [8]. 

Since the Raman response time can be comparable to the temporal pulse length of the driving 

field the nonlinear polarization should be expressed in the time domain: 

                              𝑃!"(𝑟, 𝑡) = 𝜖!𝜒 ! 𝐸 𝑟, 𝑡 𝑅 𝑡 − 𝑡! 𝐸 𝑟, 𝑡! !𝑑𝑡!
!
!!  .   (2.31) 
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Where 𝑅(𝑡 − 𝑡!) is a function that characterizes the third-order nonlinear response and 𝑡! is an 

integration variable.  For a third-order nonlinearity consisting of an instantaneous, electronic 

response and a delayed, Raman response 𝑅(𝑡) takes the form: 

                                        𝑅 𝑡 = 1− 𝑓! 𝛿 𝑡 + 𝑓!ℎ!(𝑡).         (2.32)  

Where 𝑓!is the fraction of the nonlinear response dedicated to the Raman effect, 𝛿(𝑡) is a Dirac-

Delta function and ℎ!(𝑡) is the Raman response function. The Raman gain is related to this 

Raman response function by:  

                                   𝑔! 𝜔 − 𝜔! = !!
!" !!

𝑓!𝜒(!)𝐼𝑚 ℎ 𝜔 − 𝜔!                             (2.33) 

 where ℎ(𝜔 − 𝜔!) is the Fourier transform of the Raman response function, ℎ(𝑡) [8]. 

For most crystals, such as the semiconductors studied in this thesis, the Raman response 

function can be modeled as an exponentially decaying sinusoid of the form [8]:  

                             ℎ! 𝑡 = !!!!!!!

!!!!!
exp − !

!!
sin !

!!
.       (2.34) 

Where 𝜏!,! are time constants used to match the Raman gain spectrum of the medium in 

question.  Figure 2.4a is a plot of Eq. 2.34 for GaAs where 𝜏! = 18.6  𝑓𝑠 and 𝜏! = 3  𝑝𝑠, were 

chosen in order to measure the GaAs Raman fluorescence measurements in [9].  Figure 2.4b is a 

plot of the real and imaginary part of the Fourier transform of the Raman response function 

showing gain at the Stokes frequency and loss at the anti-Stokes frequency. 
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Figure 2.4: A calculated Raman response for GaAs both in the (a) time domain and (b) frequency 

domain.   

For molecular gases such as N2 and O2 that will be studied in this thesis, a family of 

rotational-vibrational resonances complicates the Raman response function [10, 11]. For a 

mixture of molecular gases, such as the air, the Raman response takes the form: 

                    ℎ 𝑡 = 𝛴!   ℎ!" + ℎ!".       (2.35) 

Where ℎ! is the part of the response from rotations and ℎ! is responsible for the vibrational 

response. The index 𝑖 is summed over the gas species under investigation, in the following 𝑖 = 1 

corresponds to nitrogen and 𝑖 = 2 corresponds to oxygen. The rotational response is calculated 

as [11]: 

                     ℎ! 𝑡 = ℎ!! 𝑡 + ℎ!! 𝑡 = 𝛴!𝐹!! sin −𝜔!!𝑡 + 𝐹!! sin −𝜔!!𝑡           (2.36) 

Where J is the rotational quantum number and 𝜔!,!! = 4𝜋𝐵!,!𝑐 2𝐽 + 3  where 𝐵!,!  are the 

rotational constants, 𝐵! ≈ 1.99  𝑐𝑚!!   and 𝐵! ≈ 1.44  𝑐𝑚!! [11].   Finally, in the above: 
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                                     𝐹!,!! =
!!,!!!!!!!,!! !!,!! !!! !!!

!!!!
       (2.37) 

Where 𝑍!! = 1 and 2 for odd and even J, respectively and 𝑍!! = 1 and 0 for odd and even J, 

respectively. Finally, 𝜌 is the population in the state defined by the rotational quantum number 

that for a Boltzmann distribution is given by: 

               𝜌!,!! = exp −𝑐ℎ !!,!! !!!
!!!

× 𝛴!𝑍!,!! 2𝐽 + 1 exp −𝑐ℎ !!,!! !!!
!!!

!!
.      (2.38) 

For the picosecond pulse lengths considered in this thesis, the rotational part of the Raman 

response dominates over the vibrational part. As a result, the vibrational part will be neglected 

for this discussion. Figure 2.5 depicts the rotational Raman response for atmospheric air, 

separated for N2 and O2 gas. Figure 2.5a shows the time domain representation of this response 

function, showing the so-called echo recurrences of rotational wave-packets [12]. The frequency 

domain description in Fig. 2.5b shows a family of rotational resonances on either side of the 

carrier frequency. As was the case with GaAs, there is gain for the Stokes component and loss 

for the anti-Stokes component. Note that only the imaginary part of the response was plotted in 

Fig. 2.5b to simplify the figure.  
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Figure 2.5: A calculated rotational Raman response for atmospheric air, separated into 

conrtributions from N2 and O2 both in the (a) time domain and (b) frequency domain.   

Raman scattering in both solids and gases can affect the nonlinear optics of an interaction in 

different ways depending on how the laser’s spectrum overlaps with the Raman gain spectrum 

(RGS). In the case that the laser’s spectrum does not overlap with the RGS, one may observe the 

growth of distinct Stokes and anti-Stokes components located at 𝜔! ± 𝛺!. If the initial laser 

spectrum overlaps with the RGS, however, one may observe so-called “intra-pulse” Raman 

scattering, where the entire spectrum of the laser pulse will shift towards the red with increasing 

nonlinear phase shift.  For the picosecond, 10 µm laser pulses considered in this thesis, the 

bandwidth is approximately 1 THz. These parameters lead to a regime of classical Raman 

scattering for the case of GaAs (see Fig. 2.4b) and to the intrapulse Raman Scattering regime for 

the case of air (see Fig. 2.5b).   

Stimulated scattering in molecular gases is even more complicated, however, due to the fact 

that this scattering has a vibrational and rotational part. The selection rules for Raman scattering 
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in diatomic molecules is 𝛥𝐽 = 0,±2 [12].   Here 𝛥𝐽 = 0 is often referred to as Rayleigh 

scattering and 𝛥𝐽 = ±2 is referred to as rotational Raman scattering.  Stimulated scattering in 

such systems can manifest as an enhancement to the Kerr index creating an effective nonlinear 

index: 

                                                        𝑛!,!"" = 𝑛! + 𝑛!,!"#$%&#'(.        (2.39) 

For narrowband excitation (~ nanosecond pulses) the effective nonlinear refractive index is 

largest in magnitude, instantaneous and dominated by Rayleigh scattering. For broadband 

excitation (~ picosecond pulses) the magnitude of the effective nonlinearity drops and the Raman 

component becomes dominated by the delayed, rotational response.  For ultrabroadband 

excitation (femtosecond pulses), the effective nonlinearity asymptotes to a purely electronic 

response [13, 14].    

Section 2.8: The generalized nonlinear Schrödinger equation  

In principle all nonlinear optical effects can be modeled through Eq. 2.3, the driven wave 

equation. However, to save computational time much work has been dedicated to simplify 

Maxwell’s equations in order to produce pulse propagation equations that are easier to solve 

using numerical techniques. There is an entire family of such propagation equations and the 

nonlinear Schrödinger equation (NLS) is one such model [15]. Under the unidirectional 

approximation, the paraxial approximation, the slowly varying envelope approximation and 

using a reference frame moving with the laser pulse’s group velocity, the NLS in the time 

domain takes the form [8, 15, 16]: 

        !
!"
ℰ = !

!!
𝛻!!ℰ −

!!!
!

!!

!!!
ℰ + !

!! !!

!!
!
!!"
!!

.       (2.40) 
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Where the following coordinate transformations have been used: 𝑧 = 𝜉 and 𝜏 = 𝑡 − !
!!

.    In the 

above, the first term accounts for diffraction, the second term accounts for GVD and the third 

term accounts for the nonlinear response. Strictly speaking the NLS only involves cubic 

nonlinearities such that 𝑃!" ∝ ℰ !ℰ, however, any nonlinearity can be included. Equation 2.34 

works well for picosecond pulses and longer but the model must be adjusted to handle very 

broadband problems and to include Raman scattering. This modified model is known as the 

Generalized Nonlinear Schrödinger Equation (GNLSE) and takes the following form [8]: 

𝜕
𝜕𝜉 ℰ =

𝑖
2𝑘!

𝛻!!ℰ − 𝑘!  

!

!!!

𝑖!!!

𝑛!
𝜕!

𝜕𝜏! ℰ

+ 𝑖𝑛!𝑘! 1+
1
𝜔!

𝜕
𝜕𝜏 1−   𝑓! 𝐼ℰ + 𝑓!ℰ ℎ! 𝜏 𝐼 𝑧, 𝑡 − 𝜏 𝑑𝜏

!

!!
.  

                     (2.41) 

There are three main modifications to transform Eq. 2.40 into Eq. 2.41. The first modification 

involves the second term and is including the entire dispersion relation as defined in Eq. 2.26. 

The second modification involves the inclusion of a term !
!!

!
!"

 in the nonlinear response that is 

used to account for self-steepening of the laser pulse. The third modification is the inclusion of 

the Raman response using Eq. 2.31, 2.32 and 2.34. It should be noted that Eq. 2.41 only accounts 

for the third-order nonlinearity evident by the inclusion of the nonlinear index 𝑛!. In this thesis, 

Eq. 2.41 will be solved numerically to simulate the nonlinear propagation of intense 10 µm 

pulses in semiconductors. In doing so, we will restrict ourselves to 1-D simulations by neglecting 

the diffraction term in equation 2.41. However, a MATLAB code capable of simulating the 2-D 

GNLSE is presented in the appendix of this thesis.  
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Section 2.9: Nonlinear optics simulations of picosecond, 10 µm pulses  

To illustrate the physics of mid-IR nonlinear pulse propagation in the positive and negative GVD 

regime it is useful to show the results of numerical simulations for common IR materials.  To this 

end, the propagation of 1 ps, 10 µm laser pulses with a peak intensity of 10 GW/cm2 in GaAs and 

n-Ge are considered.  As with all simulations in this thesis, the 1D form of equation 2.41 is 

solved numerically using the split-step Fourier method [8].   

The first simulation is dedicated to nonlinear pulse propagation in the positive GVD regime.  

For this case, n-Ge is chosen as the nonlinear medium having a nonlinear index of 𝑛! = 3.7 ⋅

10!!" !!
!

!
  [17] and a GVD coefficient of 𝑘! = 342 !!!

!!
 [18].  The propagation length for both 

simulations are designed such that the laser pulse accumulates a nonlinear phase of 1.5 π radians, 

or such that the pulse traverses approximately 4.7 nonlinear lengths.  

Figure 2.6 shows the spectral (Fig. 2.6a) and temporal (Fig. 2.6b) pulse profile both before 

and after propagating through 2 mm of n-Ge.  Here the important parameters such as dispersive 

and nonlinear lengths are included in the title of the figure as a reference. As can be seen in Fig. 

2.6, the pulse’s spectrum is broadened considerably but the pulse’s temporal duration does not 

change much.  The only change in the temporal pulse profile of Fig. 2.6b is caused by the peak 

of the laser pulse experiencing a larger refractive index than the rest of the pulse.  This effect, 

identified in the previous section, is known as nonlinear self-steepening.  It should be noted that 

the spectral asymmetry apparent in Fig. 6a is also a result of self-steepening.   

To illustrate propagation in the negative GVD regime we consider propagation in GaAs a 

material with a nonlinear index 𝑛! = 0.4 ⋅ 10!!" !!
!

!
 [17] and a GVD coefficient of 𝑘! =



	  

	  
	  

29	  

−1343 !!!

!!
 [19].  Figure 2.7 depicts the spectral (Fig. 2.7a) and temporal  (Fig. 2.7b) pulse 

profiles before and after the laser pulse traverses approximately 2 mm of material.  It should be 

noted that this length in GaAs also results in a total nonlinear phase shift of 1.5 π radians, as was 

the case with n-Ge.    

 

Figure 2.6:  The simulated (a) spectral and (b) temporal pulse profile of an initially 1 ps, 10 µm 

laser pulse before and after traversing approximately 2 mm of Ge.   

As can be inferred by comparing Fig. 2.6a and Fig. 2.7a, the laser pulse gained much more 

bandwidth in the GaAs case, even though the pulse has traversed the same number of nonlinear 

lengths.  This is because the negative GVD of GaAs causes self-compression of the laser pulse, 

evident in Fig. 2.7b where the laser pulse has been compressed such that its peak power has been 

increased by a factor of four.  It is clear that the negative GVD regime is favorable for the 
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generation of broadband light but can be problematic for applications requiring stability, such as 

nonlinear chirping followed by compression.   

  

Figure 2.7:  The simulated (a) spectral and (b) temporal pulse profile of an initially 1 ps, 10 µm 

laser pulse before and after traversing approximately 21 mm of GaAs.   
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Chapter 3 

The picosecond CO2 laser at the UCLA Neptune Laboratory 

Section 3.1 Introduction to picosecond CO2 lasers  

The carbon dioxide laser is the only practical radiation source for generating energetic (0.1 – 1 J) 

pulses of mid-IR light in the vicinity of 10 µm. Despite this fact, the CO2 laser is not often used 

for many scientific research problems because it is difficult to amplify short (picosecond), high-

power (1-100 GW) pulses in a gas laser having a relatively narrow bandwidth. Nevertheless, 

picosecond CO2 lasers have been developed for more than thirty years [1] and have found niche 

applications where the long wavelength of the radiation provides access to novel parameter 

spaces for different applications. For example, TW-class CO2 laser pulses have been applied to 

accelerate monoenergetic ions from a hydrogen gas-jet plasma where the long wavelength 

allowed for laser plasma interactions at near critical plasma densities in a gas target [2, 3]. 

Further, intense sources of mid-IR light can be used to access the negative GVD region of highly 

nonlinear semiconductors thus opening the possibility of generating white-light in the molecular 

fingerprint region of the electromagnetic spectrum, from 2 – 20 µm [4, 5].  

 There is a two-step scheme for picosecond pulse amplification in the CO2 laser. In the first 

step, a picosecond, 10 µm seed pulse is produced using a broadband solid-state laser.  In the 

second step, this short seed pulse is amplified in CO2 amplifiers where the gain media has been 

broadened by pressure and/or field broadening that will be described in detail below.   
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 Section 3.2 Mechanisms to broaden the CO2 gain medium  

One method to increase the bandwidth of a gas laser is by pressure broadening. Figure 3.1 

depicts a simulated CO2 gain spectrum in the vicinity of the 10P branch at pressures of 1, 10 and 

25 atm.  At 1 atm, where CO2 laser technology (so-called TEA lasers) is the most mature, the 

gain spectrum is comprised of individual rotational-vibrational lines each having a width of ~ 3.5 

GHz/atm (Fig. 3.1a). Such systems are only capable of amplifying ~ 3 ns long pulses defined by 

the width of an individual rotational-vibrational line. Figure 3.1b and 3.1c show how the gain 

spectrum is broadened as the pressure of the gas is increased. As can be seen in Fig. 3.1c the gain 

spectrum becomes a continuum across the entire ~ 1.2 THz vibrational branch due to a complete 

overlap between the rotational lines when a pressure of 25 atm is achieved. Although the gain 

spectrum depicted in Fig. 3.1c is ideal for picosecond pulse amplification, it is extremely 

difficult to build large aperture lasers at pressures much greater than ~ 10 atm, thus limiting the 

operating pressure for practical power amplifiers. Amplification of a picosecond seed pulse in 

the 10 atm medium shown in Fig. 3.1b, results in amplification of a frequency-modulated laser 

pulse. In this scenario, the amplified pulse evolves into a picosecond pulse train with a pulse 

periodicity of 18.5 ps, a time constant related to the residual 55 GHz modulation visible in Fig. 

3.1b. It should be noted that the ~1.2 THz bandwidth is sufficient to amplify picosecond 10 µm 

pulses.  



	  

	  
	  

35	  

 

Figure 3.1: Simulated CO2 gain spectra at (a) 1 atm, (b) 10 atm and (c) 25 atm of pressure 

illustrating the effect of pressure broadening.  

A second method to increase the bandwidth available for amplification in the CO2 gain 

medium is to use the strong field of the laser itself in an effect known as field broadening. 

Similar to how the energy levels in a quantum system can be shifted via the Stark effect, the a.c. 

electrical field of the laser can impart bandwidth onto a quantum amplifier by shifting the energy 

levels up and down in a time-dependent manner. Figure 3.2 shows a calculated shape of a CO2 

laser line both with and without the application of a strong laser field resonant with the 

transition, taken from reference [6]. As can be seen in Fig. 3.2, the application of a 2.8 MW/cm2 

field has broadened this line substantially. In general the amount of broadening gained via field 

broadening can be estimated using 𝛥𝜈!"#$% ≈ 𝛺!"#$ = 1.38 10! 𝜇 𝐼.  Where 𝛺!!"# is the Rabi 

frequency, 𝜇 is the molecule’s dipole moment in Debye and I is the intensity of the laser in 

W/cm2 [6]. It should be noted that the dipole moment for the transition plotted in Fig. 3.2 is 
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orders of magnitude larger than the one used to amplify 10 µm light. For the 10P(20) transition 

of the CO2 laser at 10.59 µm the dipole moment is 0.0275 D [7], therefore at an intensity of 10 

GW/cm2 a 1 atm CO2 laser will be broadened such that it has comparable bandwidth to a 10 atm 

laser. In general, the amount of bandwidth available for amplification is a sum of the pressure- 

and field-broadened terms, 𝛥𝜈!"#$% = 𝛥𝜈!"#$$%"# + 𝛥𝜈!"#$%. 

Finally, it should be mentioned that the inclusion of isotopic CO2 into the gain medium can 

also broaden the bandwidth available for picosecond pulse amplification. Here CO2 molecules 

comprised of C-12 and O-16 are combined with molecules comprised of C-12 and O-18, where 

the inclusion of these isotopes has been shown to broaden and smooth the gain spectrum 

depicted in Fig. 3.1b [8]. The smoothing of the gain spectrum using high-pressure, isotopic CO2 

lasers can be used to produce a single, picosecond pulse as opposed to the picosecond pulse train 

that would be produced by amplifying a picosecond pulse in the gain spectrum depicted in Fig. 

3.1b. Despite this advantage, isotopes are not widely used for large-aperture amplifiers because 

the large volumes make these systems expensive.  
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Figure 3.2: Calculated lineshape of a CO2 gain line taken from reference [6] depicting the effect 

of a strong field on the bandwidth and shape of the line.  

 

Section 3.3 The high-repetition rate, gigawatt power, CO2 laser master-oscillator power-

amplifier system at the UCLA Neptune Laboratory  

The CO2 laser master-oscillator power-amplifier (MOPA) system at the UCLA Neptune 

Laboratory relies on a combination of pressure and field broadening in order to amplify 

picosecond, 10 µm pulses to GW-level peak powers at a relatively high pulse repetition rate of 1 

Hz [9] and to multi-TW peak powers using a large-aperture e-beam sustained amplifier that 

produces a laser pulse every 5-10 minutes. In this work only the high repetition rate 

configuration of the system was used so we describe it here in more detail. The picosecond seed 

is first amplified from nanojoule to millijoule energies in ~ 10 atm laser modules where the high 

pressure sustains the bandwidth necessary for picosecond pulse amplification.  After the laser 
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pulse is sufficiently intense (~ 1 – 10 GW/cm2) industrial, transversely excited atmospheric 

(TEA) CO2 laser modules are used for final amplification. In the final amplification stage it is the 

strong field of the laser that provides the bandwidth for picosecond pulse amplification.  

Figure 3.3 is a block diagram of the UCLA MOPA system. The front-end, marked with the 

dashed box in Fig. 10, of the system consists of a CO2 master oscillator and a Nd:Glass, 1 µm 

chirped pulse amplification (CPA) system. The master oscillator consists of an industrial TEA 

laser and two intracavity low-pressure lasers that allow for simultaneous amplification of two 

CO2 laser lines, each on a single longitudinal mode.  The picosecond, mid-IR seed is produced by 

imparting the bandwidth from the 1 µm CPA system onto the mid-IR output of the master 

oscillator using a CS2 Kerr cell. In this scheme, the mid-IR and near-IR pulses, polarized 450 

relative one another, are collinearly incident upon the Kerr cell. The intense near-IR pulse causes 

rotation of the mid-IR polarization via the Kerr effect such that the mid-IR pulse is effectively 

gated by crossed polarizers. This nonlinear optical interaction transcribes the temporal pulse 

profile from the near-IR light onto the mid-IR beam thus creating a dual-wavelength, picosecond 

pulse near 10 µm [10]. In this way, the front-end is able to produce 1 – 200 ps long, mid-IR 

pulses by changing the compressor settings of the 1 µm system.   
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Figure 3.3: Block diagram of the UCLA Neptune Laboratory’s picosecond CO2 laser system. 

The upper inset is the temporal pulse profile of the 3 ps pulse train. The lower inset is the 

temporal pulse profile when a 200 ps seed is used. CPA stands for chirped pulse amplification, 

LPL stands for low-pressure laser and TEA stands for transversely excited atmospheric.  

The mid-IR seed is amplified in a series of CO2 amplifiers, shown in the block diagram of 

Fig. 3.3. The pulse is first amplified from ~ nJ energies to approximately 4 mJ in a 10 atm, 

regenerative amplifier. The pulse is then amplified to approximately 40 mJ in an 8 atm, booster 

amplifier used in a two-pass configuration.  Finally, the pulse is amplified to 100 mJ in a TEA 

CO2 laser that is used in a three-pass configuration.   

If the system is seeded with a 1 – 3 ps pulse, a ~ 3 ps pulse train is produced that is depicted 

in the upper inset of Fig. 3.3. This pulse train consists of 5 – 7 pulses that are separated by 18.5 



	  

	  
	  

40	  

ps, a constant that is related to the 55 GHz modulation of the 10P branch (see Fig. 3.1b). If, 

instead, the system is seeded with a pulse that is longer than 20 ps, a smooth 200 ps pulse is 

amplified instead as can be seen in the lower inset of Fig. 3.3. The difference in temporal pulse 

formats is caused by how the seed’s bandwidth overlaps with the CO2 gain spectrum. In the case 

of the 3 ps pulse train, the seed’s spectrum covers multiple rotational-vibrational lines, thus 

causing the 18.5 ps modulation in the time domain. In the 20 ps case, the seed’s spectrum is 

overlapped with only one rotational-vibrational line.   

The high-repetition rate, picosecond CO2 laser system at the UCLA Neptune laboratory is 

able to provide 20 GW of peak power at a pulse repetition frequency of 1 Hz and is able to 

produce radiation at one or two wavelengths simultaneously. In the 200 ps configuration the 

peak-power is limited to approximately 2 GW. For the experiments presented in this thesis, both 

the 3 ps and 200 ps configurations will be used where the dual-frequency capability of the 

system has been used for four-wave mixing experiments in gases and solids.  
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Chapter 4 

Measurements of the nonlinear refractive index of atomic and molecular gases using four-

wave mixing 

Section 4.1 Introduction  

Measurements of the nonlinear refractive index are of paramount importance both for the 

planning of nonlinear optics experiments and for the design of high peak-power laser systems.  

Here, the importance of experimental measurements is compounded by the fact that it is 

incredibly difficult to calculate the nonlinear index from first principles.  Even scaling laws such 

as the generalized Miller’s rule [1, 2] cannot estimate nonlinear index values that are accurate 

enough for most applications [3].    

While the nonlinear refractive indices of most materials have been measured at visible and 

near-IR wavelengths, there is much less data for the mid-IR spectral range. In the mid-IR, highly 

nonlinear materials such as bulk semiconductors have been measured [4] but this data is scarce 

and has a large variation. Further, the low nonlinearities characteristic of gases have only been 

measured for the first time recently [5]. Indeed, the experiments presented in this chapter 

represent the first nonlinear index measurements of atomic and molecular gases in the long-wave 

IR. This data is important for the planning of experiments on mid-IR laser filamentation in the 

atmosphere where simulations [6] have shown the promise of long range, large diameter 

filaments in a region of the electromagnetic spectrum in which low-loss propagation in the 

atmosphere is possible.        
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Section 4.2 Methods to measure the nonlinear refractive index 

In principle, any third-order nonlinear optical process can be used to measure the third-order 

susceptibility 𝜒(!). From this susceptibility the nonlinear refractive index can then be calculated 

by using Eq. 2.19 of Chapter 2. For such measurements, the processes of self-phase modulation 

(SPM) [7, 8], cross-phase modulation (XPM) [9, 10], third-harmonic generation (THG) [11], 

four-wave mixing (FWM) [4, 12, 13] and self-focusing [14] are most commonly used.   

To extract the nonlinear refractive index, one must measure or infer the nonlinear phase shift 

that is given by 𝜙!" = 𝑛!𝑘!𝐼𝐿 for a diffraction free beam where 𝑛! is the nonlinear refractive 

index, 𝑘! is the vacuum wave number, 𝐼 is the laser intensity and 𝐿  is the length of the nonlinear 

medium. In the case of SPM or XPM, this nonlinear phase shift can be measured directly using 

interferometry. For THG and FWM the nonlinear phase shift must be inferred indirectly by 

measuring the efficiency of the production of newly generated frequencies. Direct phase 

measurements are typically employed for small nonlinear phase shifts on the order of 100 mrad 

while efficiency measurements are usually used to measure nonlinear phase shifts on the order of 

one radian or more.  Through careful choice of laser pulse parameters and through the use of 

sensitive detectors it is possible, however, to measure the small nonlinear phase shifts 

characteristic of direct phase measurements using amplitude measurements. In this chapter we 

will show the results of FWM measurements that corresponded to < 100 mrad nonlinear phase 

shifts in gases. Aside from the use of a sensitive detector, these measurements were made 

possible by using relatively long laser pulses (200 ps) that had a high spectral energy density. 

While atomic gases exhibit a purely electronic nonlinear response, nonlinear refractive index 

measurements of molecular gases represent an effective nonlinear index 𝑛!,!"" = 𝑛! +
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𝑛!,!"#$%&#'(, (see Eq. 2.39 and surrounding discussion in Chapter 2) where 𝑛! represents the 

purely electronic nonlinear response and 𝑛!,!"#$%&#'( represents the contribution to the 

nonlinearity related to the instantaneous Rayleigh (𝛥𝐽 = 0) or delayed Raman (𝛥𝐽 = ±2) 

response. Here 𝛥𝐽 is the change in the rotational quantum number. The relative contributions and 

magnitudes of the Rayleigh and Raman responses vary greatly dependent on laser pulse 

parameters with the Rayleigh part dominating for narrowband (~ ns pulse durations) and the 

Raman response dominating for broadband (~ ps pulse durations) laser pulses. The effective 

nonlinearity begins to asymptote to a purely electronic response for <100 fs pulse durations. It is 

therefore only possible to determine the relative contributions of the delayed molecular response 

and the instantaneous electronic response through time-resolved measurements [9, 10] or by 

measuring the effective nonlinear index for a range of laser pulse durations.   

Section 4.3 Measurements of the nonlinear refractive index via four-wave mixing 

All nonlinear index measurements presented in this chapter have been made by studying the 

FWM of a two-frequency (see Fig. 3.3 of Chapter 3) CO2 laser pulse propagating through a 

nonlinear medium (see Chapter 3 for a detailed description of the laser system used for 

experiments). In doing so we have measured the FWM yield as a function of the intensity 

contained at each wavelength. To measure the nonlinear index of gases, long interaction lengths 

were necessary.  In order to extract a meaningful nonlinear index, Eq. 2.14 of Chapter 2 was re-

derived to account for the diffraction of the laser beam.    

For mid-IR FWM experiments in gases, the phase-mismatch is negligible and we can re-

write Eq. 2.13 as: 

        !
!"
ℰ 𝑧,𝜔! ≈ − !!!!!!

!! !!
𝜖!

!
!
𝜒 ! ℰ! 𝜔! ℰ∗ 𝜔! .           (4.1) 
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Using the notation introduced in Fig. 2.1b and re-normalizing the complex amplitude such that 

𝑎!𝑎!∗ = 𝐼!, Eq. 4.1 can be re-written as for the first Stokes FWM component as: 

                                  !
!"
𝑎!(𝑧) = − !!!

!

!
!!

!

!!! !! !! ! !! ! !!
𝑎!! 𝑧 𝑎!∗(𝑧).       (4.2)  

Using 𝑘! =
!!
!

 , 𝑛! =
!
!!

!

!!! !! !! ! !! ! !!
 and integrating along the interaction length, L, Eq. 4.2 

becomes: 

                                                     𝑎! = −𝑖𝑘!𝑛! 𝑎!! 𝑧 𝑎!∗ 𝑧 𝑑𝑧
!
! .      (4.3) 

This can be written in terms of intensities as: 

                                                     𝐼! = 𝑘!!𝑛!! 𝐼! 𝑧 𝐼! 𝑧
!
! 𝑑𝑧

!
.      (4.4) 

Since the energy contained in the FWM sideband and both pump pulses are measured in the 

experiment, it is useful to express Eq. 4.4 in terms of pulse energy.  This is accomplished by 

using the definition of intensity 𝐼! =
!!
!(!)

= !!
!!!!(!)

, where P is the power, W is the energy 

contained in the pulse, 𝜏 is the temporal pulse length and S is the area of the beam given by 

𝑆 𝑧 = 𝜋𝑎 𝑧 𝑏(𝑧), where 𝑎 and 𝑏 are the major and minor axes of the elliptical beam used in 

the experiment, respectively.  With these definitions Eq. 4.4 can be re-written as: 

                                                𝐼! 𝑧 = !!!!!!!!!!!
!!

!"

!" ! ! !
!
!

!
!

!

.    (4.5) 

Note that, for Eq. 4.5 it is assumed that both pumps have the same spatial distribution and 

temporal pulse length. The integral in Eq. 4.5 was evaluated by high-resolution spatial 
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measurements of the beam along the entire interaction length as will be explained in the next 

section of this chapter. Finally, the intensity of the FWM sideband can be expressed as 𝐼! =
!!
!!!!

, 

where 𝑆! is the area, and 𝜏′ is the pulse length of the FWM beam.  In the low efficiency limit 

𝜏! = !
!
  [15] such that Eq. 4.5 can be written as: 

                                                  𝑊! =
!!!!!  !!!!!!!!

!!!
!"

!" ! ! !
!
!

!
!

!

.    (4.6) 

According to Eq. 4.6, the nonlinear index is related to the slope of a plot of the FWM sideband 

energy as a function of 𝑊!
!𝑊!. 

Section 4.4 Measurements of the nonlinear refractive index of atomic and molecular gases  

Measurements were carried out using 200 MW, 200 ps CO2 laser pulses comprised of radiation 

amplified on the 10P(20) (10.59 µm) and 10R(16) (10.27 µm) lines of the CO2 laser, as depicted 

in Fig. 4.1a. Figure 4.1b shows the experimental set-up for nonlinear index measurements in 

gases. The laser pulses were focused with a 2.5 m focal length NaCl lens through a 2 m long cell, 

as shown in Fig. 4.1b.  For this experiment peak intensities of ~ 15 GW/cm2 were used. After the 

cell, the pump beams were separated from the FWM sideband with the use of a 150 G/mm 

diffraction grating. After the first diffraction grating, the FWM sideband of interest was sent 

through a scanning monochromator to further isolate the signal from the energetic pump. This 

configuration allowed for the detection of FWM energies on the order of 10-7 relative to the 

pump.  
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Figure 4.1: (a) A dual-wavelength laser pulse is transformed into a series of sidebands by FWM 

in a nonlinear medium. (b) Experimental set-up for nonlinear index measurements of gases. 

The sensitivity of the detection scheme necessitated a careful analysis of the background 

FWM light that was produced in several IR optical elements and in the transport of the high-

power beam through the air. This was accomplished by taking background measurements in He 

gas, which has a nonlinear refractive index approximately 20x smaller than that of the air. It 

should be noted that vacuum measurements did not serve as an adequate assessment of the FWM 

background because intra-cell optics produced a spatial shift at differing pressures. Temporal 

measurements of the pump pulses were accomplished by transcribing the temporal pulse length 

from the mid-IR pump to a 658 nm probe by polarization rotation in a CS2 Kerr cell [16]. The 
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visible probe’s temporal pulse duration was then measured using a picosecond streak camera 

with a ~ 5 ps resolution. Over twelve laser shots the temporal pulse length of the pump was 

found to be 197 ± 21 ps. Figure 4.2 depicts a representative temporal pulse profile as measured 

with the streak camera. 

 

Figure 4.2: (a) Measurement of a representative temporal pulse profile used for nonlinear index 

measurements.  

To study the FWM process in gases we first measured the dependence of the FWM sideband 

yield as a function of cell pressure.  Figure 4.3 shows this dependence for the first anti-Stokes 

sidebands for input powers of ~ 200 and 130 MW in laboratory air at pressures ranging from 380 

to 760 torr. Since the nonlinear index should vary linearly with fill pressure, one would expect 

the curves of Fig. 4.3 to be quadratic as a function of pressure. Instead we have observed a linear 



	  

	  
	  

49	  

dependence for the 130 MW case and saturation for the 200 MW case at high pressure. This 

deviation from theoretical scaling is attributed to the onset of collisional ionization near the focus 

of the pump beam. This ionization causes refraction of the FWM sideband resulting in a 

reduction of the collection efficiency for our detection scheme. This is consistent with the 

observation of fluorescence associated with plasma recombination at high pressures and 

intensities.  

   

Figure 4.3: Energy of the first anti-Stokes sideband as a function of pressure in laboratory air. 

The dashed and solid lines were produced using 200 and 130 MW, respectively.  

To avoid the contribution of plasma formation we have limited quantitative measurements of 

the nonlinear index to pure gases at pressures below 380 torr.  Figure 4.4 shows a result of such a 

measurement in 250 torr of oxygen gas and 250 torr of helium gas, used as a background 

measurement. In Fig. 4.4 we have plotted the FWM yield as a function of 𝑊!
!𝑊! as defined in 
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Eq. 4.6. As can be seen, the linear dependence obtained for both the sample gas and the 

background suggests that the effects of ionization are negligible at these pressures. Figures 4.5 

and 4.6 show this same dependence for nitrogen gas and for dry air.  

 

Figure 4.4: Energy in the first stokes sideband plotted as a function of the energy of the 10.6 µm 

pump times the energy in the 10.3 µm pump squared for 250 torr of oxygen gas.  Note that 𝑊! 

stands for the energy contained at wavelength 𝜆 in microns. 
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 Figure 4.5: Energy in the first stokes sideband plotted as a function of the energy of the 10.6 µm 

pump times the energy in the 10.3 µm pump squared for 380 torr of nitrogen gas.  Note that 𝑊! 

stands for the energy contained at wavelength 𝜆 in microns.  
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Figure 4.6: Energy in the first stokes sideband plotted as a function of the energy of the 10.6 µm 

pump times the energy in the 10.3 µm pump squared for 380 torr of dry air. Note that 𝑊! stands 

for the energy contained at wavelength 𝜆 in microns.  

To understand the symmetry of the FWM spectrum we measured the yield of the 2nd Stokes 

and the 1st and 2nd anti-Stokes sidebands. Figure 4.7 shows a typical FWM spectrum obtained in 

380 torr of laboratory air. The amplitude of the FWM sidebands shown in Fig. 4.7 were obtained 

by taking the difference between the average FWM signal obtained in He gas and laboratory air 

of the same pressure. In this case, we have averaged 10 laser shots of comparable input pulse 

parameters. The FWM spectrum depicted in Fig. 4.7 is likely asymmetric because the delayed, 

rotational Raman response plays a significant role in the effective nonlinearity for 200 ps pulses. 

The FWM spectra observed for noble gases, exhibiting only an instantaneous electronic 

nonlinearity, was found to be symmetric. Figures 4.8 and 4.9 show the FWM yield as a function 

of 𝑊!
!𝑊! as defined in Eq. 4.6 for xenon and krypton gas.   
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 Figure 4.7:  A typical FWM spectrum obtained in 380 torr of laboratory air. 
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Figure 4.8: Energy in the first stokes sideband plotted as a function of the energy of the 10.6 µm 

pump times the energy in the 10.3 µm pump squared for 380 torr of Xenon gas.  Note that 𝑊! 

stands for the energy contained at wavelength 𝜆 in microns.  
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Figure 4.9: Energy in the first stokes sideband plotted as a function of the energy of the 10.6 µm 

pump times the energy in the 10.3 µm pump squared for 380 torr of krypton gas.  Note that 𝑊! 

stands for the energy contained at wavelength 𝜆 in microns.  

The nonlinear index can be extracted from the difference in slope between the sample and 

background curves of Fig. 4.4 – 4.6 and 4.8, 4.9 in accordance with Eq. 4.6. To calculate these 

values we first needed to account for the diffraction of the laser beam. This was accomplished by 

high-resolution spatial measurements of the expansion of the beam using a pyroelectric camera. 

These images were then manually analyzed to extract the major and minor axes of the elliptical 

beam used for measurements. Figure 4.10 shows a plot of the extracted major and minor axes, 

the insets of the figure show sample images obtained with the pyroelectric camera. Here, the use 

of a single focusing lens resulted in clear astigmatism, visible in Fig. 4.10. Nevertheless, the 

beam reaches a minimum 1/e2 size of ~ 600 µm that corresponds to peak intensities on the order 

of 15 GW/cm2 for the highest energy laser pulses shown in Fig. 4.4-4.6 and Fig. 4.8, 4.9. The 
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area below the curves of Fig. 4.10 were evaluated by numerical integration in order to calculate 

nonlinear index values using Eq. 4.6. 

 

 

Figure 4.10: The evolution of the major and minor axes of the elliptical beam used for nonlinear 

refractive index measurements in gases.  The insets of the figure show example images of the 

beam as measured with a pyroelectric camera.  

  To calculate the experimental uncertainty in these measurements we have included the 

uncertainty in the least-squares fit of both the sample gas and the He background, the uncertainty 

in the laser pulse measurements, and the uncertainty in evaluating the integral of Eq. 4.6. The 

uncertainties were added in quadrature as: 

                                          
!!!
!!
= !!"

!!"

!
+ !!

!

!
+ !!

!

!
                                         (4.7) 
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Where 𝛥𝑚 is the difference in slope between the sample and background gas, 𝜏 is the laser 

pulse length, and 𝛷 is the result of the integral of Eq. 4.6. Finally, 𝜎! is the uncertainty 

associated with the quantity x. The uncertainty in 𝛥𝑚 was found by adding the uncertainty in the 

least-squares fit of both the sample and background gas in quadrature. This uncertainty, different 

for all gases, was on the order of 15 – 20% and dominated the uncertainty in the nonlinear index 

measurements. The uncertainty in the pulse length was taken as the standard deviation of 12 

consecutive measurements of the laser pulse length and was found to be ~ 11%. A typical 

measurement of this type can be seen in Fig. 4.2.  Finally, the uncertainty in the numerical 

integral was estimated by considering the difference between an ideal Gaussian beam and the 

beam used for measurements. Here we have calculated the area under the curve for an ideal 

Gaussian beam having a waist of ~ 300 µm, as measured in experiment, and have compared this 

with the area under the curves plotted in Fig. 4.10. The difference between these two integrals 

was only found to be 2.3 %. This small difference arises because it is only the focal region that 

significantly contributes to this integral. In order to remain conservative, however, we have 

assumed that the uncertainty in our measurements could be off by as much as 10%. Even 

assuming such a large uncertainty for this integral, it is still the uncertainty in the determination 

of the slopes of the best-fit lines shown in Fig. 4.4-4.6 and 4.8, 4.9 that dominates the total 

uncertainty in measurements of the nonlinear refractive index. The MATLAB code used to 

extract the slope uncertainties and to calculate the numerical integral can be found in the 

Appendix C of this dissertation.  

We first present nonlinear refractive index values obtained for the noble gases since they exhibit a 

solely electronic nonlinearity. Table 4.1 summarizes our measurements for the nonlinear index of noble 

gases. Here we were able to measure the nonlinearity of Kr and Xe but were unable to detect substantial 
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FWM in Ar gas. In presenting our data we have compared our measurements with those measured at 0.8 

µm [17].  In addition, we have calculated theoretical values of the nonlinear index by extrapolating the 0.8 

µm data to 10.6 µm using the generalized Miller’s rule [2] (see Appendix E for a simple derivation of 

Miller’s rule for the third-order susceptibility).  As can be seen in Table 4.1, we have observed a faster 

decrease in the nonlinear index than what is predicted by the Miller’s rule scaling.   

 

Table 4.1: Nonlinear indices for noble gases scaled to 1 atm 

Gas species λ = 0.8 µm  

[17]  

λ = 10.6 µm 

(calculated)a 

λ = 10.6 µm 

(measured) 

 n2(10-19 cm2/W) n2(10-19 cm2/W) n2(10-19 cm2/W) 

Ar 0.97 ± 0.12 0.95 ± 0.12  <1b 

Kr 2.2 ± 0.4 2.2 ± 0.4 1.4 ± 0.3 

Xe 5.8 ± 1.1 5.6 ± 1.1 3.5 ± 0.8 

aCalculated using the generalized Miller’s formula [2] 

bNot measureable using our set-up. 

One possible explanation for this decrease may be strong field effects caused by the large 

ponderomotive energy generated by 10.6 µm radiation focused to intensities of 1010 W/cm2.   This is an 

equivalent ponderomotive energy as a 0.8 µm pulse being focused to an intensity of 1012 W/cm2 for 

which saturation of the electronic nonlinearity has been predicted to occur [18-21].  This saturation may 

result from higher-order, self-defocusing susceptibilities [18, 19] or from the dynamics of weak ionization 

that affect the nonlinear polarizability [20, 21].  These higher-order effects may not be observable in the 

near-IR since they occur at intensities that inevitably cause optical field ionization [17, 18] but may be 

observable in the long-wave IR. Another possible explanation for these observations is a strong coupling 
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between the fundamental field and harmonic components that are perfectly phase-matched in the mid-IR 

causing a steepening of the optical waveform thus changing the nonlinear polarizability [22]. However, it 

should be noted that no significant third or fifth harmonic was observed in these experiments. Clearly, 

additional experimental data is required to fully determine the cause of these observations. Future 

experiments dedicated to nonlinear refractive index measurements at other mid-IR wavelengths or as a 

function of intensity may elucidate how the nonlinear polarizability changes at long wavelengths.  

Table 4.2 summarizes the measurements for molecular nitrogen, oxygen, and the air. Here 

we have presented our measurements for the effective nonlinear index of refraction, 𝑛!,!"" =

𝑛!,!"!# + 𝑛!,!"#$%&#'(, and have compared these results to those obtained at 0.8 and 2.4 µm.  As 

can be seen from Table 4.2, our nonlinear index measurements are very close to those obtained at 

near-IR wavelengths.   

Table 4.2: Effective nonlinear indices for major air constituents scaled to 1 atm  

Gas Species λ = 0.8 µm [8] λ = 2.4 µm [10] λ = 10.6 µm 

 n2,eff (10-19 cm2/W) n2,eff (10-19 

cm2/W) 

n2,eff (10-19 cm2/W) 

N2 3 ± 0.7 3.2 ± 0.5b 4.5 ± 0.9 

O2 8 ± 2.2 6.4 ± 0.8b 8.4 ± 1.3 

Air 4 ± 1.1a - 5.0 ± 0.9 

aCalculated from measurements of N2, O2 and Ar. 

bCalculated from measurements in S. Zahedpour, et. al. using n2, eff =n2 + n2,rot [10]. 

Since we have used FWM of an 882 GHz beat-wave for these measurements, it behooves us to argue 

that we have measured the non-resonant third-order nonlinearity that is related to the nonlinear refractive 
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index. Indeed, nitrogen and oxygen have multiple rotational transitions that occur in a frequency range 

close to the 882 GHz beat-frequency used for measurements and the use of nondegenerate FWM may 

introduce an increase to the nonlinear response of a molecule [3].  To investigate the potential 

contribution of a resonant enhancement to the rotational nonlinearity we have plotted the resonant, 

rotational hyperpolarizability of single oxygen and nitrogen molecules in the vicinity of 882 GHz using 

Eq. 34 of reference [3].  It should be noted that the hyperpolarizability is related to the third-order 

nonlinear polarizability by 𝑃!"
(!) = 𝑁𝛾, where N is the number of molecules and 𝛾 is the 

hyperpolarizability. The results of this calculation are presented in Fig. 4.11 that shows a plot of the 

resonant hyperpolarizability as a function of beat-frequency in the range from 400 to 1200 GHz (see Fig. 

4.11a) and zoomed in the vicinity of the 882 GHz beat frequency (see Fig. 4.11b).  In Fig. 4.11, the peaks 

are related to the Raman lines of nitrogen and oxygen.  

The selection rules for Raman scattering of diatomic molecules is 𝛥𝐽 = 0,±2, where 𝛥𝐽 = 𝐽! − 𝐽! 

is the change in the rotational quantum number between initial state 𝑖 and final state 𝑓. Here 𝛥𝐽 = 0 is 

responsible for elastic, Rayleigh scattering and 𝛥𝐽 = ±2 is related to inelastic, Raman scattering. As seen 

in Fig. 4.11 the closest transition to the beat-frequency used in measurements is at 840 GHz and is related 

to the J = 4 to J =2 transition of the nitrogen molecule.   However, since the both the linewidth of this 

transition and the bandwidth of the pump pulse used for measurements are ~ 2 GHz, the 42 GHz 

separation between this transition and the beat-frequency may make the resonant contribution negligible. 

However, additional measurements using a degenerate four-wave mixing process such as SPM are still 

required to rule out a possible resonant contribution to the effective nonlinear refractive indices presented 

in Table 4.2. 
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Figure 4.11: (a) The resonant third-order polarizability per molecule of N2 and O2 in the range of 

400 to 1200 GHz and (b) zoomed in the vicinity of the 882 GHz beat frequency used for 

nonlinear refractive index measurements. The zoomed area is denoted by the dashed oval in (a).    

Finally, the fact that we have measured smaller nonlinearities in the noble gases Xe and Kr than what 

was calculated using Miller’s scaling implies that the purely electronic nonlinearity may be smaller in the 

long-wave IR than at shorter wavelengths. This finding has implications for our measurements in 

molecular gases as well since the effective nonlinearity is a combination of an electronic and rotational 

response.  Since we have measured a comparable nonlinearity at 10.6 µm than that observed in the near-
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IR, this implies that the rotational nonlinearity is larger in magnitude in the long-wave IR. Additional 

measurements of the nonlinear refractive index using shorter laser pulses or using a time-resolved 

measurement technique are required to quantify the magnitude of the rotational nonlinear response in this 

spectral range. The use of shorter pulses may make it possible to measure nonlinearities using ~ 100 

GW/cm2 intensities with a reduced probability of avalanche ionization. Such fields may be used to study 

whether or not there is intensity dependence to electronic nonlinearities driven by long-wave IR fields. 

Section 4.5 Measurements of the nonlinear refractive index of GaAs  

Since the next two chapters of this thesis will be dedicated to nonlinear optics experiments in 

semiconductors, we have also measured the nonlinear index of GaAs using the same FWM 

technique described above. In doing so, we have effectively repeated an experiment carried out 

by Wynne [4] in which the nonlinear index of GaAs was measured via FWM of a CO2 laser 

pulse comprised of radiation near ~ 9 µm and ~ 10 µm.  

For nonlinear index measurements in GaAs ~ 300 ns long CO2 laser pulses, produced with 

the master-oscillator of the CO2 MOPA system (see Chapter 3), were focused to a peak intensity 

of ~ 1 MW/cm2 and transmitted through a 7 mm long, AR-coated GaAs slab. The output 

radiation was dispersed on a single diffraction grating such that the sideband energy and the 

energy in each pump could be measured as shown in Fig. 4.12.  
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Figure 4.12: The experimental set-up for nonlinear refractive index measurements in GaAs. 

OAP: off-axis parabolic mirror, HCT: HgCdTe and Cal.: calorimeter.  

 

The nonlinear index of GaAs was extracted from the slope of a plot of the FWM sideband energy as a 

function of the energy in the pump waves as was described in section 4.4.  Table 4.3, below, shows the 

result of our measurement and that obtained by Wynne [4].  As can be inferred from Table 4.3, our 

nonlinear index measurement is equal to the literature value but with a smaller error bar. It should be 

noted that this measurement also provides additional validity to the analysis presented in section 4.4 for 

atomic and molecular gases. 

 

Table 4.3: Nonlinear refractive index of GaAs obtained via FWM at UCLA compared with 

the value reported in [4]. 

 Result from J. J. Wynne [4] UCLA Experiment 

n2 of GaAs (10-14 cm2/W) 4 ± 2 4.1 ± 0.5 
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Chapter 5 

Supercontinuum generation from 2 – 20 µm in GaAs pumped by 3 ps CO2 laser pulses  

Section 5.1: Introduction to mid-IR supercontinuum generation  

Supercontinuum (SC) generation involves the production of coherent, white-light via a 

combination of nonlinear optical processes. The bandwidth of the white-light is such that 𝛥𝜈/𝜈! 

approaches unity where 𝛥𝜈 is the bandwidth of the radiation and 𝜈! is the carrier frequency. Such 

light may be spatially coherent, spectrally coherent or both and is typically generated through a 

combination of nonlinear optical effects such as self-phase modulation (SPM), self-focusing, 

stimulated Raman scattering (SRS), and four-wave mixing (FWM) [1, 2]. 

The broadest SC are generated in media that exhibit group velocity dispersion (GVD) and a 

nonlinear response that are opposite in sign because this creates a condition in which a pulse will 

become self-compressed as its spectrum is broadened via SPM, as was discussed in section 2.4 

of Chapter 2. For conventional, self-focusing nonlinearities this is accomplished by propagating 

a pulse in the negative GVD region of a material.  Alternatively, the self-defocusing 

nonlinearities attainable by cascaded quadratic processes can be used to generate SC in crystals 

that exhibit positive GVD [3].   

The vast majority of SC generation experiments have been performed using self-focusing 

nonlinearities pumped by near-IR lasers. Since all near-IR materials have positive GVD, the 

waveguide properties of optical fibers are used to shift the materials’ zero dispersion wavelength 

toward shorter wavelengths thus ensuring that the pump pulse propagates in the negative GVD 

regime [1, 2].  Here, broadband SC spectra have been generated using nanosecond [4], 

picosecond [5] and femtosecond [6] pulses propagating in micro-structured or tapered fibers. 
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Although the use of a near-IR pump limits the long-wavelength extent of the SC, spectra 

extending to ≤ 5 µm have been realized using fluoride [4] and chalcogenide [6] IR fibers.    

 Applications would benefit from extending SC sources to longer wavelengths. The region 

from 2 – 20 µm is of particular importance since all simple molecules have a fundamental 

rotational-vibrational bands in this range. By pumping chalcogenide fibers with mid-IR (4.5 µm) 

pulses researchers have shown SC generation from 1.4 – 13.3 µm [7].  However, chalcogenide 

fibers are difficult to create and have a complicated transmission spectrum.  Bulk semiconductors 

such as GaAs and CdTe have a spectrally flat transmission curve in the mid-IR region, exhibit 

low optical loss, are available in large sizes, and possess nonlinearities ~ 1000x that of silica 

making them excellent candidates for SC generation.  However, the optimal pump for these 

materials is in the range of 7 – 10 µm range where high-power lasers are scarce.  

A picosecond CO2 laser provides a means to study SC generation in bulk semiconductors.  

Before now there has only been one reported experiment where a SC spectrum from 3 to 14 µm 

was generated in GaAs pumped by intense CO2 laser pulses [8]. Here researchers used tightly 

focused, 600 µJ, 9.3 µm pulses at an intensity of 1011 W/cm2. These pulse parameters resulted in 

an exponentially decaying, SC spectrum characteristic of SPM rather than the plateu-shaped SC 

spectrum characteristic of SC experiments in fibers that rely on a combination of SPM, SRS and 

FWM. In this chapter we will present an experiment on the generation of SC from 2 – 20 µm in 

GaAs crystals pumped by 20 mJ, 3 ps CO2 laser pulses centered at 10.6 µm [9]. In doing so we 

will identify and study a regime of SC generation that is dominated by FWM, SRS and 

modulational instability, similar to experiments in near-IR pumped fibers. Finally, it should be 

mentioned that a similar SC generation mechanism in GaAs using 150 fs, 2 µJ, 8 µm pulses has 

been recently reported [10].  
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Section 5.2: Measurements of mid-IR supercontinuum generation in GaAs pumped by 3 ps 

CO2 laser pulses  

Figure 5.1a depicts the experimental set-up used to measure the mid-IR SC spectrum and 

temporal pulse profile of the laser pulses used in the experiment. For this experiment we have 

used 20 mJ, 3 ps CO2 laser pulse trains that are described in detail in Chapter 3 of this 

dissertation. These pulses were focused to a peak intensity of 1010 W/cm2 and sent through 

various lengths of AR-coated GaAs crystals. Note that semi-insulating, Cr-doped GaAs crystals 

possessing extremely low optical loss were used for this experiment. The small reflection from 

the AR-coatings was monitored using a HgCdTe detector to account for shot-to-shot fluctuations 

of the laser system. After the GaAs crystal the spectrum of the output radiation was measured 

using a scanning monochromator and a cryogenically cooled HgCdTe detector. The temporal 

pulse format of the IR radiation was measured using a picosecond streak camera. In order to 

realize temporal measurements with a streak camera, the pulse profile of the IR radiation was 

converted to visible light by co-propagating a diode laser with the IR radiation in a CS2 filled 

Kerr cell [11]. A representative measurement of the CO2 laser pulse train without propagation 

through GaAs is shown in Fig. 5.1b.   

To understand the evolution of the SC spectrum we studied SC generation in 2, 30 and 67 

mm long GaAs crystals. We did not observe significant spectral broadening in the 2 mm sample 

but the 30 mm GaAs crystal produced a SC spectrum from 2 – 20 µm as shown in Fig. 5.2. Here 

each point on the plot in Fig. 5.2 was obtained by averaging three laser shots of comparable input 

energy. The spectrum shown in Fig. 5.2 has a bandwidth of ~ 135 THz and is limited by the 

transmission of the material [12]. As can be seen in Fig. 5.2, the SC spectrum has three peaks 

identified with third harmonic generation (THG), second harmonic generation (SHG) and SRS 
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near 3.5, 5.3 and 16 µm respectively. The 16 µm feature is consistent with the 8.55 THz Raman 

shift in GaAs [13].   

Figure 5.3 shows the SC spectrum generated in 67 mm of GaAs.  In this case, the spectrum 

features a long-wavelength plateau that extents from 12 – 20 µm. We have also observed an 

order of magnitude greater yield than was observed in the 30 mm case of Fig. 5.2. The spectrum 

was more modulated than in the 30 mm case and contains a measurable Raman anti-Stokes peak 

near 8 µm.  

            

Figure 5.1: (a) Simplified experimental set-up for supercontinuum generation. HCT stands for 

HgCdTe. (b) Representative temporal pulse format used for SC generation.  
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Figure 5.4 summarizes the results of temporal measurements of the laser pulses after the 

GaAs crystal. Figure 5.4a shows the temporal pulse format observed for the 2 and 30 mm case. 

For these lengths of GaAs, we did not observe any significant changes in the temporal pulse 

format. Figure 5.4b depicts temporal measurements after the 67 mm crystal. In this case, 

although the pulse train retains its original 18.5 ps modulation, each individual pulse has broken 

into a series of sub-pulses. These sub-pulses were measured to be ~ 1.5 ps long, limited by the 

time resolution of the streak camera and the nonlinear response of the CS2 Kerr cell.  

 

Figure 5.2: SC spectrum measured after 30 mm of GaAs.  SHG and THG stand for second 

harmonic generation and third harmonic generation, respectively. 

The observed pulse splitting in the negative GVD regime can occur from modulational 

instability (MI), soliton fission (SF) or a combination of both [14]. According to numerical 

simulations presented in [2], nonlinear optical interactions with soliton orders less than ~ 16 tend 
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to be dominated by SF while soliton orders greater than ~ 16 lead to MI.  The soliton order can 

be calculated using 𝑁! = 𝐿!/𝐿!", as defined in section 2.4 of Chapter 2. For our experimental 

conditions we have calculated a soliton order of ~ 45, suggesting that this SC is dominated by 

MI. Since the MI is seeded from noise, this suggests that the SC generated in this experiment is 

spectrally incoherent. In general, additional measurements of the coherence of the SC radiation is 

needed to determine whether MI or SF dominates the observed behavior.  

We have also studied SC generation in 134 mm of GaAs by arranging two 67 mm crystals in 

tandem.  For this configuration we observed a very similar spectrum as was shown in Fig. 5.3 

and did not observe any substantial increase in the yield of the long-wavelength section of the 

plateau. These observations indicate that the SC process is likely terminated shortly after 67 mm 

of propagation distance.  
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Figure 5.3: SC spectrum measured after 67 mm of GaAs. SHG and THG stand for second 

harmonic generation and third harmonic generation, respectively. Note that the width of the 

initial spectrum of a 3 ps, 10.6 µm pulse at the 10-6 level is ~0.2 µm.  

We have estimated the efficiency of the SC generation process in GaAs by using narrow 

band pass filter centered at 12.1 µm. For the 67 mm case the yield is approximately 10-5 relative 

to the carrier. Despite this low conversion efficiency, we estimate the SC spectrum has a spectral 

energy density of 200 pJ nm-1 – 2 nJ nm-1, that is comparable with the high spectral energy 

densities characteristic of SC generation via laser filamentation in a bulk crystal [15].   
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Figure 5.4:  (a) Input temporal pulse profile zoomed in the vicinity of maximum peak power. (b) 

Temporal pulse profile after propagating through 67 mm of GaAs.  

Section 5.3: Simulations of mid-IR supercontinuum generation in GaAs using the 

Generalized Nonlinear Schrödinger Equation   

We have modeled the SC generation process in GaAs by numerically solving the one 

dimensional Generalized Nonlinear Schrödinger Equation (GNLSE) that was defined by Eq. 

2.41 of Chapter 2. In doing so, we have modeled the propagation a 3 ps pulse train, similar to the 

one used in the experiment. Plots of the spectrum and temporal pulse profile of the numerical 3 
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ps pulse train can be seen in Fig. 5.5a and 5.5b, respectively.  For the dispersion of GaAs we 

have used the measurements reported in reference [12] and have included up to the eighth term 

of the Taylor series approximation of the dispersion relation in order to match the long-

wavelength portion of the SC spectrum. For the nonlinear index of GaAs we have used n2 = 0.6 x 

10-13 cm2/W, similar to the value measured by the four-wave mixing experiment described in 

section 4.5 of Chapter 4. To include SRS we have modeled the Raman response as an 

exponentially decaying sinusoid of frequency 8.55 THz and a bandwidth of  ~ 100 GHz, to 

match the Raman fluorescence measurements [13]. Figure 2.4 of chapter 2 depicts the time- and 

frequency-domain representation of the Raman response used for these simulations. Finally, a 

stochastic amount of noise with a standard deviation equal to the square root of the photon 

number in one temporal discretization bin was included as prescribed in [2]. This noise is 

necessary to observe MI in the numerical simulations, as will be shown below.  
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Figure 5.5:  (a) Input spectrum used for SC simulations. (b) Input temporal pulse profile used for 

SC generation simulations.  

Figure 5.6a and 5.6b show the simulated spectrum and temporal pulse profile after 

propagating through 67 mm of GaAs. The spectrum is broadened to 45 THz or from 5 to 20 µm 

and is qualitatively similar to the measured SC spectrum depicted in Fig. 5.3. The simulations 

also predict the pulse break-up via MI as can be seen in Fig. 5.6b. It should be noted that we 

have zoomed the time-domain figures in the vicinity of maximum peak power.   
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Figure 5.6:  (a), (c), and (e) are simulated SC spectra and (b), (d), and (f) are simulated temporal 

pulse profiles in the vicinity of the two most intense pulses after propagating through 67 mm of 

GaAs. (c) and (d) represent results obtained with SRS disabled. (c) and (f) are results obtained 

without noise.  

To understand the effect of SRS on SC generation in GaAs we have performed simulations 

with SRS disabled. Figure 5.6c and 5.6d show the simulated spectrum and temporal pulse profile 

after 67 mm of GaAs with SRS disabled. As can be seen in the figure, SRS increases the yield on 

the long wavelength plateau by as much as two orders of magnitude. In the time-domain, 

disabling SRS has manifested in less temporal pulse splitting from MI, as can be seen in Fig. 
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5.6d. It should be noted that SRS has been identified as a major mechanism for inducing MI and 

SF in SC experiments in fibers [2].     

Finally, to analyze the effect of MI on the SC spectrum we have performed simulations 

without the inclusion of stochastic noise. Figures 5.6e and 5.6f depict the simulated spectrum and 

temporal pulse profiles after propagating 67 mm in GaAs without noise.  As can be seen in Fig. 

5.6e, the yield of the long-wavelength part of the SC spectrum has decreased even further than 

the result depicted in Fig. 5.6d, with SRS disabled. In addition, the total extent of the SC 

spectrum has also been greatly diminished without noise.  In the time-domain, shown in Fig. 

5.6e, it is clear that MI has been completely disabled without the inclusion of noise. Instead, the 

most intense pulse has been compressed, without splitting. Similar to near-IR experiments in 

fibers, it is the action of pulse splitting that causes such broadband light to be generated in the SC 

generation process.  

 The major discrepancies between the experimental and simulated spectra are on the high-

frequency side of the SC spectrum. This arises because we have used an envelope model that is 

unable to account for harmonic generation. Another significant limitation is that this model does 

not include second order nonlinear effects, such as second harmonic generation and cascaded 

quadratic nonlinearities. These effects certainly play a role in this experiment, evident by the 

large SHG peak in the experimental spectrum of Fig. 5.3.  Three-wave mixing processes 

governed by the second-order nonlinearity may be responsible for the additional features shown 

in the experimental spectrum. Finally, there is a discrepancy between the simulated and 

experimental temporal pulse profile measurements. In the experiment, there are sub-pulses that 

appear between the 18.5 picosecond separations of the CO2 pulse train that are absent in the 

simulated temporal pulse profiles. This discrepancy may occur because we have neglected 
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spatial effects such as self-focusing. Indeed, self-focusing can cause additional pulse splitting 

even in media with positive GVD [16].    

To benchmark these simulations, we have also simulated SC generation using the pulse 

parameters used by Corkum, et. al. [8].  Figure 5.7a depicts the experimental spectrum obtained 

in 6 cm of GaAs when 2.5 ps, 9.3 µm CO2 laser pulses were focused to a peak intensity of 1011 

W/cm2 and Fig. 5.7b shows the simulated SC spectrum using the GNLSE. As can be seen in the 

figure, the calculation qualitatively predicts the shape and extent of the SC, except for the high-

frequency components generated via harmonic generation. The main difference in SC spectrum 

obtained using 10.6 and 9.3 µm pulses is attributed to the change in the GVD. Since GaAs is less 

dispersive at 9.3 µm, the pulses do not have a sufficient length to undergo MI resulting in a 

narrower SC spectrum, as can be seen in Fig. 5.7. Although, 1-D simulations using the GNLSE 

are able to qualitatively predict the shape of the SC spectrum, more detailed calculations 

including harmonic generation, self-focusing, second order nonlinearities and optical field 

ionization are required to quantitatively predict the outcome of experiments.  
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Figure 5.7:  (a) Experimental SC spectrum obtained in a 6 cm GaAs crystal pumped by 9.3 µm, 

2.5 ps and 8 ps CO2 laser pulses from reference [8]. The open circles correspond to data taken 

with 2.5 ps pulses at full power, the open triangles are 2.5 ps pulses with half power, the closed 

circles are 8 ps pulses with full power, the crosses are 8 ps pulses with half power and the upside 

down triangles are 8 ps pulses with quarter power. (b) Simulated SC spectrum using 9.3 µm 

pulses with a 2.5 ps pulse duration as described in reference [8].  
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Chapter 6 

Broadband four-wave mixing compression of a 200 ps CO2 laser beat-wave in GaAs 

 

Section 6.1: Multiple four-wave mixing compression as a method to produce high-power, 

picosecond pulses in the mid-IR 

In the previous chapter we have shown that supercontinuum generation in the molecular 

fingerprint region is one application for GW-class, picosecond pulses with a wavelength near 10 

µm.  It is still challenging, however, to produce high-power, picosecond pulses in this spectral 

range.  Indeed, picosecond CO2 laser systems are complicated in that they require a broadband 

solid-state laser front-end and high-pressure CO2 lasers for picosecond amplification, as was 

discussed in Chapter 3.  

In this chapter, we present an experiment in which we test an idea of compressing the 

approximately 1 ns long pulses available from common TEA CO2 lasers to a train of picosecond 

pulses using nonlinear optics. In the previous chapters of this thesis, we have considered four-

wave mixing (FWM) in which only two sidebands are generated. For this chapter we will rely on 

so-called multiple FWM, in which many sidebands are generated. The bandwidth generated by 

the multiple FWM of a CO2 laser beat-wave, if compressed, can result in the reduction of the 

initial beat-period to ultrafast time scales. This technique of multiple FWM compression has 

been used to convert CW light at a wavelength of 1.5 µm to trains of 0.1 – 1 ps pulses in fibers 

with negative GVD [1-3].  In this chapter, we will explore this technique using 200 ps CO2 laser 

beat-waves similar to the pulse format used for the nonlinear index measurements detailed in 
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Chapter 4. One of the possible applications of such a source can be the generation of broadband 

radiation from 8 – 14 µm as was studied theoretically by Kapetanakos et. al. [4].  

Section 6.2: Multiple four-wave mixing compression in GaAs and NaCl crystals using 106 

GHz, CO2 laser beat-waves 

Experiments were carried out using the 200 ps pulses produced by the Neptune laboratory’s 

MOPA system, as described in Chapter 3. For this experiment 106 GHz beat-waves were 

produced by mixing radiation produced on the 10P20 (10.59 µm) line with radiation produced on 

the 10P16 (10.55 µm). Both CO2 laser lines were amplified synchronously in a bifurcated CO2 

laser cavity with independent control of the gain to loss ratio for each wavelength (see Chapter 3 

for more information).   

Figure 6.1a shows the general scheme of this experiment, where a dual-frequency beat-wave 

is transformed into a manifold of sidebands in a cubic nonlinear medium. Figure 6.1b shows a 

simplified set-up for measurements of the FWM spectrum and temporal pulse profile after the 

150 MW, 106 GHz beat-wave, focused to a peak intensity of ~ 0.75 GW/cm2, was propagated 

through GaAs and NaCl crystals of various lengths. It should be noted that NaCl was used as a 

pulse compressor in this experiment since it has a similar negative GVD as GaAs but has 1000x 

less nonlinearity. After the crystals we have measured the FWM spectrum using two diagnostics. 

The first was a single-shot spectrometer employing a pyroelectric camera as a detector, a typical 

FWM spectrum showing the first two red-shifted sidebands can be seen as the left inset of Fig. 

6.1b. Here, the use of a pyroelectric camera allowed for a calibration of the side-band yield on an 

absolute scale. The second spectral diagnostic comprised of a scanning monochromator and a 

cryogenically cooled HgCdTe and was used to perform high-resolution measurements of the 
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FWM spectrum. Finally, measurements of the temporal pulse profile were accomplished using a 

picosecond streak camera, as described in chapter 5.  

 

   

Figure 6.1: (a) A dual-frequency beat-wave is transformed into a family of sidebands after 

propagation through a nonlinear medium. (b) Simplified experimental set-up to measure the 

spectral and temporal profiles of CO2 laser beat-waves after multiple four-wave mixing in GaAs 

followed by compression in NaCl.  The inset is a measurement of the spatial profile of the beam 

measured with a pyroelectric camera.   
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We have simulated FWM and compression in GaAs and NaCl by numerically solving the 1-

D, Generalized Nonlinear Schrödinger Equation (GNLSE), introduced in section 2.6 of Chapter 

2. Spatial effects, free-carrier formation from optical field ionization, harmonic generation, and 

second order effects were neglected in this model. Due to these limitations we have used the 

nonlinear index as a fitting parameter, using n2 = 0.9 x10-13 cm2/W, similar to the value obtained 

from FWM measurements and presented in section 4.5 of Chapter 4. As was the case in the 

previous chapter, we have used the dispersion relation measured by Johnson, et. al. [5] and have 

modeled the Raman response as an exponentially decaying sinusoid with a frequency of 8.55 

THz and a bandwidth of ~ 100 GHz, consistent with the Raman fluorescence measurements of 

reference [6].  (See Chapter 2, section 2.5 for detailed information on the Raman response of 

GaAs).  

We first studied FWM mixing and compression in 67, 134 and 268 mm of GaAs. In doing so 

we have used two 67 mm long Cr-doped GaAs crystals in tandem to study 134 mm of nonlinear 

propagation length and in a double-pass configuration to study 268 mm.  We have observed a 

significantly broadened FWM spectrum after propagation through GaAs as can be seen in Fig. 

6.2.  The vertical lines shown on Fig. 6.2 represent the maximum amplitude of the side-bands as 

measured with the monochromator. We have also produced simulated FWM spectra for these 

lengths by solving the GNLSE for our experimental parameters.  As can be seen in Fig. 6.2b, the 

FWM spectrum reached a maximum bandwidth of 1.76 THz after 134 mm of GaAs. We 

observed a saturation of the spectral broadening as scaling the interaction length to 268 mm did 

not produce additional bandwidth, as could be seen in Fig. 6.2c.     
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Figure 6.2: Experimentally measured FWM spectra (a), (b) and (c) and the simulated FWM 

spectra (e), (f), (g) after passage of the 106 GHz beat-wave through various lengths of GaAs, as 

indicated on the figures. The initial pump wavelengths are shown in red.  

We have also measured the temporal pulse profiles corresponding to nonlinear propagation in 

67, 134 and 268 mm of GaAs. Figure 6.3 depicts the results of these measurements. Here, there 

is an approximately 9 ps modulation corresponding to the 106 GHz beat-frequency for all cases. 

After propagation in the nonlinear medium, however, the pulses are compressed by the combined 

action of FWM and the negative GVD of GaAs. To analyze this pulse compression we have 

presented the average and the standard deviation of the FWHM pulse length, obtained by fitting 

5 – 10 pulses from the same train with a sech2 shape. In doing so, it was necessary to correct for 

the finite temporal resolution of the streak camera and for the rotational response time of the CS2 
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Kerr cell.  The presented pulse lengths are obtained by 𝜏! = 𝜏!"#$! − 𝜏!! − 𝜏!"#! , where 𝜏!"#$ is 

the measured pulse length, 𝜏!~ 1 ps is the rotational response of CS2 and 𝜏!"#~1.5 ps is the 

temporal resolution of the streak camera. These measurements indicate that the pulses are 

compressed from an average pulse length of 5.7 to 2.3 ps in 268 mm of GaAs, as shown on Fig. 

6.3. It should be noted that the temporal profile after 67 mm of GaAs (see Fig. 6.2a) was 

indistinguishable from the temporal profile without propagation in a nonlinear medium. We have 

also shown the simulated temporal pulse profiles for the same lengths, shown in Fig. 6.3d, 6.3e 

and 6.3f for comparison.  

 

Figure 6.3: Experimentally measured temporal pulse profiles measured after nonlinear 

propagation in (a) 67, (b) 134 and (c) 268 mm of GaAs. Simulated temporal pulse profiles 

corresponding to propagation in (e) 67, (f) 134, and (g) 268 mm of GaAs.  
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The simulation results presented in Fig. 6.2 and Fig. 6.3 qualitatively match the observed 

spectral broadening and pulse compression for the 67 and 134 mm propagation lengths.  A 

striking discrepancy between simulation and experiment is observed, however, for the 268 mm 

case. In the experiment, we have observed saturation in the spectral broadening whereas the 

simulations predict that this broadening should continue. Similarly, the simulations predict more 

pulse compression than what is observed in experiment for the 268 mm case. These qualitative 

discrepancies indicate that there are serious limitations in the 1-D GNLSE model for such large 

nonlinear phase shifts.   

One possible explanation for the discrepancy between simulations and experiment is that 

two-dimensional effects such as self-focusing may begin to play a role.  For these pulse 

parameters the ratio of P/Pcrit is approximately 40 and the self-focusing distance (see Eq. 2.23 

and 2.24 of Chapter 2) is 220 mm, shorter than the 268 mm interaction length used in the 

experiment. We have analyzed the beam profile after the 67 and 134 mm of GaAs using 

magnified images of the laser beam with 20 µm resolution. No signs of self-focusing or beam 

distortion was observed for these conditions. Spatial measurements for the 268 mm case were 

not possible because of the double pass configuration. However, tighter focusing of a single-line 

beam (10.6 µm) – reducing the beam radius by a factor of two – resulted in observable beam 

distortion after 134 mm of GaAs. For the 268 mm case a possible beam break-up via self-

focusing coupled with a meter-scale distance from the GaAs crystal to our spectral diagnostic 

could manifest in a poor collection for the most broadband components of the FWM spectrum. 

Another critical limitation of this modeling is the fact that second order processes were not taken 

into account. Cascaded quadratic processes, such as second harmonic generation (SHG) and 

difference frequency generation (DFG) can manifest in a reduction of the nonlinearity (see 
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Appendix D for a detailed description of cascaded quadratic nonlinearities). These cascaded 

quadratic effects will be discussed in more detail in the next section of this chapter.  

Finally, we have carefully optimized this pulse compression scheme in an attempt to obtain 

short, high-quality pulses. To obtain transform-limited pulses it is necessary to balance the 

effects of nonlinearity and GVD [1].  To accomplish this we have replaced the last 134 mm of 

GaAs with a 234 mm long, bulk NaCl pulse compressor (𝑘! = −1645 fs2/mm).  Figure 6.4 

depicts the measured and simulated temporal pulse profiles for this configuration. Here we have 

produced ~ 1.6 ps pulses, shorter than the 2.3 ps pulses produced with GaAs alone. The 

transform limited pulses for the FWM spectrum shown in Fig. 6.2b is ~ 1.2 ps.  

 

Figure 6.4: (a) Experimental and (b) simulated temporal pulse profiles after the 106 GHz beat-

wave propagates through 134 mm of GaAs and 234 mm of NaCl.  
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Section 6.3: Multiple FWM GaAs crystals using 165 and 882 GHz, CO2 laser beat-waves 

and cascaded quadratic difference frequency mixing 

In addition to the results presented above, we have also studied multiple FWM using faster beat-

frequencies of 165 and 882 GHz obtained by mixing the 10P20 (10.59 µm) line with the 10P14 

(10.55 µm) and 10R16 (10.27 µm) lines of the CO2 laser, respectively. Although the streak 

camera did not have a sufficient temporal resolution to measure pulse compression we were still 

able to study how the broadening via FWM changed as a function of beat-frequency.  

We have observed significantly less efficient and asymmetric spectral broadening as we 

increased the beat-frequency. Figure 6.5 shows the experimentally measured FWM spectra for 

the 882 GHz case obtained by using 7, 30 and 67 mm of GaAs. Interestingly, whereas the 106 

GHz FWM spectrum only exhibited strong asymmetry after 268 mm of GaAs (see Fig. 6.2c), the 

882 GHz FWM spectrum was asymmetric after just 7 mm of GaAs. It should be noted that the 

rate at which the FWM spectrum is generated scales as the inverse of the dispersive length [3] 

𝐿! =
!!!

!!
= !! !!  

|!!|
, where f is the beat-frequency (See Eq. 2.24 of chapter 2), which is why the 

882 GHz produced FWM sidebands in a comparatively short GaAs crystal.  
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Figure 6.5: Experimentally measured spectra obtained by propagating the 882 GHz beat-wave 

through (a) 7, (b) 30 and (c) 67 mm of GaAs.  

To investigate the observed decrease in FWM efficiency we have simulated the 67 mm case, 

for which a fair comparison can be made with the 106 GHz case presented in Fig. 6.2a.  Figure 

6.6 shows a comparison of the experimental (Fig. 6.6a) and simulated (Fig. 6.6b) FWM 

spectrum. To match the observed spectral broadening we needed to simulate this case with a 

nonlinear index of 0.5x10-13 cm2/W, a value ~ 40% smaller than the nonlinear index found to 

match the FWM spectra obtained with the 106 GHz beat-wave.  
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Figure 6.6: Experimentally measured (a) and simulated (b) spectra after the 882 GHz beat-wave 

propagated through 67 mm of GaAs.  The pump wavelengths are colored red.  

Quadratic nonlinearities, for which GaAs is known, may be the cause behind these 

observations.  As is discussed in Appendix D, it is now well established that cascaded three-

wave mixing can manifest in an effective third-order nonlinearity. The three-wave mixing 

processes of importance here are SHG and DFG.  Analytic estimates (see Eq. D.6 of Appendix 

D) indicate that SHG may be responsible for decreasing the intrinsic third-order nonlinearity by 

~ 10 %. It should be noted that this value may be increased by other sum frequency generation 

(SFG) processes among the various sidebands. It is unlikely, however, that cascaded SHG and 

SFG can explain our observation that the nonlinear index decreases as a function of beat-

frequency since the linear refractive index does not change rapidly in the range from 10.5 – 10.6 

µm or 5.2 – 5.3 µm. The phase-matching condition for the DFG component, however, changes 

much more rapidly since this frequency is in the vicinity of the phonon-band.  

It has been shown that DFG between CO2 laser lines can be used to generate THz radiation in 

room temperature GaAs, where the DFG process is phase-matched by the anomalous dispersion 

of the phonon band [7].  Figure 6.7, taken from Tochitsky et. al., shows the external phase-
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matching angle as a function of the DFG wavelength for GaAs.  For the 106 GHz beat-wave, the 

DFG component has a wavelength of 2.8 mm where the phase-mismatch is zero for collinear 

propagation, as can be inferred from Fig. 6.7. For the 882 GHz beat-wave, however, the DFG 

wavelength, approximately 340 µm, suffers a finite phase-mismatch for collinear propagation. 

This phase-mismatch may manifest as an effective third-order nonlinearity according to Eq. D.15 

that was derived in Appendix D.  

Estimation of the contribution from cascaded DFG using Eq. D.15 of Appendix D shows that 

this effect can only account for a reduction of the intrinsic third-order nonlinearity by ~ 1%. This 

number may be increased, however, in the case that there are multiple sidebands since each DFG 

combination can contribute to the effective nonlinearity. Examination of Eq. D.10 and Eq. D.11 

of Appendix D shows that the cascaded contribution should be much more pronounced for the 

red-shifted side of the FWM spectrum than for the blue-shifted side (see the relevant discussion 

in Appendix D).  This is consistent with our experimental observation that the blue-shifted side 

of the FWM spectrum was generated with ~ 100x more efficiency than the red (see Fig. 6.6a).  

The observed asymmetry may also be analogous to the asymmetry observed in cascaded SHG 

that is caused by large group velocity mismatch between the fundamental field and the SHG 

component [8]. Nevertheless, this cascaded DFG process, while still not well understood, is 

likely a universal nonlinear optical phenomenon of mid-IR pumped solids that deserves its own 

detailed study.  
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Figure 6.7: External phase-matching angle versus wavelength for DFG between two CO2 laser 

lines in GaSe and GaAs.  This plot was taken from reference [7]. 
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Chapter 7 

Conclusion 

This dissertation has been wholly concerned with the first experimental studies of the third-order 

nonlinear optics of gases and semiconductors driven by gigawatt power, long-wave infrared 

(LWIR) radiation. Here, the development of a high-repetition rate CO2 laser system enabled 

experiments using 1- 10 GW/cm2, picosecond pulses at a wavelength of 10 µm. These intensities 

are three to four orders of magnitude larger than those used in past experiments yet still remain 

below the ionization threshold of the materials under investigation. As a result, we have been 

able to study a new regime of LWIR nonlinear optics whereby materials are driven by electric 

field strengths just below the ionization or damage threshold. The use of such high intensity 

pulses has enabled major contributions including, the first measurements of the nonlinear 

refractive index of atomic and molecular gases at a wavelength of 10 µm, the generation of the 

broadest infrared supercontinuum by nonlinear propagation of 10 µm pulses in GaAs, and the 

production of ultra-fast 10 µm pulses by four-wave mixing compression in GaAs.  Through these 

experiments, we have shown that the nonlinear optics of gases and semiconductors driven by 

gigawatt, LWIR radiation is not a trivial extension of the nonlinear optics explored using near-IR 

lasers. The experiments presented in this dissertation rather suggest that the nonlinear optics of 

high-intensity, long-wavelength radiation may prove to be a rich sub-field, both for its great 

practical promise and for furthering our understanding of light-matter interactions.  

Future work on the LWIR nonlinear optics of gases might include measurements of the 

nonlinear refractive index of atomic and molecular gases using shorter, 3 ps, pulses as opposed 

to the 200 ps pulses that were used for the measurements detailed in Chapter 4. The application 
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of such short pulses may allow for nonlinear refractive index measurements at a range of 

intensities from 1 – 100 GW/cm2 while still remaining below the threshold for avalanche 

ionization. These measurements are necessary to understand the origin of the anomalously low 

electronic nonlinearities observed in Kr and Xe. The use of such short pulses combined with 

time-resolved nonlinear refractive index measurement techniques may also be used to measure 

the relative contributions of the electronic and molecular nonlinearities to the effective nonlinear 

refractive indices of the diatomic molecules N2 and O2. Such measurements will be useful in 

understanding the origin of the large molecular nonlinearities that were observed using 200 ps, 

10 µm pulses.  

We have shown that the LWIR nonlinear optics of semiconductors may have potential for 

applications such as white-light generation in the molecular fingerprint region (see Chapter 6). 

To enable such applications, however, future work in this area should be devoted to basic 

research since the nonlinear optics of semiconductors in the LWIR is not well understood. For 

example, we have observed that the effective nonlinear refractive index of GaAs is a strong 

function of the beat frequency in FWM experiments (see Chapter 6). This observation suggests 

that the effective nonlinear refractive index of semiconductors may be dependent on the 

bandwidth of the driving laser pulse. While we have hypothesized that cascaded difference 

frequency mixing may be the cause of these observations, FWM measurements over a range of 

beat frequencies available by amplification on various CO2 laser lines may be used to study this 

effect in detail and determine whether or not this hypothesis is correct. Aside from the interplay 

between second- and third-order nonlinearities in semiconductors such as GaAs, the nonlinear 

optics of semiconductors using 1 – 10 GW/cm2 LWIR radiation is an unexplored area of 

research. Here, experiments using such high intensities may result in optical field ionization and 
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a shifting of the band-gap via the dynamic Franz-Keldysh effect that is expected to lead to 

intensity dependent changes to both the linear and nonlinear properties of the material. These 

considerations underscore the importance of measuring the nonlinear refractive indices of 

semiconductors driven by intense LWIR radiation.  
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Appendix A 

The design of a Martinez-style, grating-based stretcher for 3 ps, 10.59 µm pulses 

We have a designed a Martinez-style [1], grating-based stretcher capable of stretching few 

picosecond pulses to tens of picoseconds at a wavelength near 10 µm.  A simplified diagram of 

the Martinez-style stretcher is depicted in Fig. A.1, below. The device consists of two diffraction 

gratings with a 1:1 telescope placed between them.  By changing the distance between the focus 

of the telescope and the second diffraction grating, (G in Fig. A.1) it is possible to achieve both 

negative and positive group velocity dispersion (GVD). It is possible, therefore, to use a 

Martinez-style stretcher as either a pulse stretcher or a pulse compressor.  It should be noted that 

both diffraction and refraction always impart negative GVD to a laser pulse unless there is a 

focusing optic placed between the dispersive elements [1].  As can be seen in Fig. A.1, the input 

beam is incident on the first diffraction grating and is reflected through the two lenses. After the 

lenses the beam is incident upon the second diffraction grating that reflects the beam upon a 

retro-reflector.  The retro-reflector sends the beam back along the exact beam path with a shift in 

the vertical direction, thus reflecting four times from a diffraction grating before leaving the 

optical system along the same beam path as the input beam.  
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Figure A.1: A schematic of a Martinez-style, grating-based stretcher. L1,2 are two lenses with a focal 

length f, DG1,2 are diffraction gratings with the same grating period, RR is a retro-reflector, and G is the 

distance between the second diffraction grating and the focus of the telescope, used to control dispersion.  

 

Although it is possible to build a stretcher as depicted in Fig. A.1, it is more convenient to 

build the device in a folded design that can be visualized by folding the schematic of Fig. A.1. 

about the blue line of symmetry. In this configuration, it is possible to use a single diffraction 

grating and a single curved mirror thereby saving optics and simplifying the alignment procedure 

of the device.   

Figure A.2 shows a detailed schematic of the grating-based stretcher for 10 µm light. The 

input beam is sent through an alignment iris and transmitted between the two mirrors of the 

retro-reflector. The beam is then incident upon a 150 g/mm diffraction grating that reflects the 

light onto a curved mirror with a focal length of 762 mm.  The beam is then transmitted through 

a second alignment iris and focused on a flat-mirror as depicted in Fig. A.2.  The flat mirror 

reflects the beam back upon the same beam path with a slight shift in the vertical direction such 



	  

	  
	  

102	  

that the beam intercepts the retro-reflector.  The retro-reflector imparts a vertical shift unto the 

beam and reflects it back through the system once more such that the beam is incident on the 

diffraction grating four times. After the beam’s fourth reflection from the diffraction grating it is 

reflected from a pick-up mirror and transmitted through the third and final alignment iris.  

Finally, Fig. A.3 is a photograph of the actual stretcher, with red lines indicating the path of the 

laser beam.  

 

 

Figure A.2: A schematic of the 10 µm grating-based stretcher. I1,2,3 are irises used for alignment 

of the system. PM is a pick-up mirror used to reflect the radiation out of the system. DG is the 

150 g/mm diffraction grating. CC is a curved mirror with focal length 762 mm and FM is a flat 

mirror. All measurements are in millimeters.  
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Figure A.3: A photograph of the 10 µm grating-based stretcher. I1,2,3 are irises used for alignment 

of the system. PM is a pick-up mirror used to reflect the radiation out of the system. DG is the 

150 g/mm diffraction grating. CC is a curved mirror with focal length 762 mm and FM is a flat 

mirror. 
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The initial distances used to build the stretcher were calculated using Lab2 [2], a free 

Labview program that is capable of simulating a variety of experiments in ultrafast optics.  The 

actual distances, shown in Fig. A.2, were found empirically by stretching a ~ 3.5 ps, 10 µm laser 

pulse to ~ 20 ps.  The stretching factor was measured using a picosecond streak camera.  

Temporal measurements were realized by converting the temporal information from the mid-IR 

light onto a visible diode laser probe via polarization rotation inside of a CS2 filled Kerr cell [3].  

Figure A.4a and A.4b show show temporal pulse profiles of a 3.5 ps, CO2 laser pulse train 

(see Chapter 2 for more information) with (Fig. A.4b) and without (Fig. A.4a) dispersion. The 

dispersed case was measured with the distances indicated in Fig. 4a and the undispersed case was 

measured with g of Fig. A.1 set to zero.  Note that this was accomplished by setting the distance 

from the curved mirror and the flat mirror of Fig. A.2 to 682 mm.  As can be seen in Fig. A.4, the 

stretcher has increased the pulse duration of the initially 3.5 ps pulses to approximately 20 ps, 

thereby transforming the picosecond pulse train into a smooth pulse. It should be noted that the 

throughput of the stretcher after optimization was found to be ~ 50%.  The spatial beam profile 

after the stretcher is shown on the inset of Fig. A.4. 
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Figure A.4: (a) A temporal pulse profile measured with the stretcher in its nominal (unstretched 

position) and (b) the temporal pulse profile measured with the distances indicated in Fig. A.2.  

The inset of the figure is the spatial profile of the output beam as measured with a pyro-electric 

camera.  
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Appendix B 

Software used to simulate the 2D, cylindrically symmetric generalized nonlinear 

Schrödinger equation  

B.1 Introduction  

We have developed a MATLAB code to simulate nonlinear pulse propagation using the 

cylindrically symmetric, generalized nonlinear Schrödinger equation (GNLSE). The GNLSE is 

described in Chapter 2 (see Eq. 50 and surrounding discussion) and accounts for diffraction, self-

focusing, self-phase modulation (SPM), stimulated Raman scattering (SRS), self-steepening, and 

dispersion.  

 

The GNLSE is solved using the split-step Fourier method that is described in detail 

elsewhere [4].  Here the dispersive and diffractive terms are separated from the nonlinear term 

such that the GNLSE can be expressed as: 

                                                              !ℰ
!"
= 𝐷 + 𝑁 ℰ	  	   	   	   	   	   (A.1)	  

where	  	  𝐷	  represents	  the	  dispersive	  and	  diffractive	  terms	  and	  𝑁	  represents	  the	  nonlinear	  term.	  	  

In	  the	  limit	  of	  small	  longitudinal	  step-‐sizes,	  the	  field	  at	  the	  next	  spatial	  step	  can	  be	  

approximated	  as	  a	  function	  of	  the	  field	  at	  the	  previous	  step:	   

    ℰ 𝑧 + ℎ, 𝜏 ≈ expℎ𝐷 expℎ𝑁 ℰ(𝑧, 𝜏).	  	   	   	   (A.2)	  
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Where h is the step-size. In the standard split-step Fourier method, used to solve the 

simplified nonlinear Schrödinger equation (see Eq. 49) each spatial step is split in half.  In the 

first half-step, the initial field is Fourier transformed and the diffractive and dispersive operators 

are solved for in the frequency domain. The field is then inverse Fourier transformed and the 

nonlinear operator is evaluated in the time-domain for the second half-step. Here, the dispersive 

and diffractive terms are solved for in the Fourier domain to simplify the spatial and temporal 

derivatives that appear in the model.  It should be noted that, for the GNLSE, both the nonlinear 

and linear operators must be solved for in the frequency domain in order to account for the time 

derivative and convolution of the field with the Raman response function (See Eq. 50 of Chapter 

2 and surrounding discussion). 

To reduce computational time the GNLSE is simulated in a cylindrically-symmetric 

coordinate system. To solve the diffractive term in the GNLSE the field is transformed into the 

frequency domain using a Hankel transform. Numerically, the quasi-discrete Hankel transform is 

computed by a matrix multiplication that can be performed quickly using MATLAB. The 

description of the Hankel transform and its numerical implementation can be found in references 

[6] and [7], respectively.  

B.2 MATLAB code  

clear variables; 

close all; 

  

% Physical quantities and medium properties 

%========================================================== 
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%Physical parameters describing the radiation  

  

c1 = 2.998e-2; %vacuum speed of light in cm/ps 

lambda = 1.06e-4; %Laser central wavelength in cm 

nu_0 = c1/lambda;  

w0_FWHM = 3e-1;%2e-2; % Initial laser beam radius in cm 

w0= 1.1774*w0_FWHM;  

f = 200; %Focal length of lens in cm 

Chirp = 0;%-2.47; %Initial gaussian chirp parameter (negative is 
negative chirp)                 

k0 = 2*pi/lambda; %Propagation constant in cm ^(-1) 

k = n0*k0; 

tau_FWHM = 1.5;%50e-3; %Pulse length in ps 

tau = 1.1774*tau_FWHM;  %Intial 1/e pulse length in picoseconds 

 

%Medium parameters 

  

n0 = 1.4802;%1.328;  %Refractive index at the carrier frequency 

b2 = 7.6959e-4;%2.41e-4; %GVD in ps^2/cm 

b3 = 4.2652e-7; %TOD in ps^3/cm 

b4 = 1.3826e-10; %FOD in ps^4/cm 

  

K = 5;         %Multiphoton number mod(hw/ui + 1) 

beta_k = 0;% 8e-50;%7; %cross section for MPI 5th order 
cm^7/GW^4 

n2 = 0.80e-15; %Nonlinear index of Benzene in cm2/W literature 
value is 1e-15 
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n4 = -1e-5;  

  

% Raman parameters 

  

t1 =5.34e-3;%18.6e-3 for GaAs  (8.55 THz) *2 for CdTe 16.3 for 
9.76 THz; raman parameter t1 [ps] frequency 

t2 = 3.6;%1.32;%1.32;%3;   %originally 3ps for GaAs, 1.2 for 
CdTe        % raman parameter t2 [ps] decay time 

fr =0.08;%0.10;%0.18;%0.17;%0.245;    %0.25 for GaAs 0.18 for 
glass % fraction of chi3 related to raman 

  

%Power and field strength 

  

Pcrit = 3.77*pi*n0/(2*k^2*n2); %critical power for self-focusing 

PonPc = 108;%40.5;%50.6;%100; %ratio of the beam power to the 
critical power  

Power = PonPc*Pcrit; %input peak power in GW 

Aeff = pi*w0_FWHM^2; %Effective initial area in mm^2 

Int = Power/Aeff;  %Input intensity in GW/cm2 

u0 = sqrt(Int); %Initial amplitude of the field sqrt(PeakPower) 

  

%Derived quantities (Length scales etc) 

                     

zr = n0*k0*w0^2/2;                     

L0 = 1/(n2*k0*u0^2); 

Ld = tau^2/abs(b2); 
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%================Windows and 
discretization====================== 

N_t = 2^14;%2^14;  %Number of sampling points 

N_r = 2^7; 

  

t_win = 50; %Time window in ps 

r_win = 0.7;   %Space window in cm 

dt = t_win/N_t;                           % ps 

t = -t_win/2:dt:(t_win/2-dt);   

  

%=============================================================== 

  

  

%==================%Fourier space=========================== 

nu_win = 1/dt;  %nu is in THz 

dnu = 1/t_win; 

nu = [(0:N_t/2-1),(-N_t/2:-1)]/(dt*N_t);  

  

nu = fliplr(nu); 

  

%  Raman response function 

  

               

  

tres = t - t(1);  
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hr =((t1^2+t2^2)/(t1*t2^2)).*exp(-tres/t2).*sin(tres/t1); 

hrw = fft(hr, N_t); 

  

hrw = 1*hrw;           %Multiplying by a neg. 1 

hr = ifft(hrw, N_t);    %ensures that 

                        %Stokes grows first JP 4/1/2016 

  

  

%Diagnostic code to look at raman response function 

figure(5) 

plot(t, hr/max(hr)); 

figure(6) 

plot(nu, imag(hrw)); 

  

%============================%Hankel Transform setting up the 
matrices% ============================ 

ord = 0;      %% Transformation order 

load c.mat; 

c = c(ord+1,1:N_r+1); 

  

k_win = c(N_r+1)/(2*pi*r_win);    % Maximum frequency 

r = c(1:N_r)'*r_win/c(N_r+1);   % Radius vector 

k_r = c(1:N_r)'/(2*pi*r_win);   % Frequency vector 

  

[Jn,Jm] = meshgrid(c(1:N_r),c(1:N_r)); 

C = 
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(2/c(N_r+1))*besselj(ord,Jn.*Jm/c(N_r+1))./(abs(besselj(ord+1,Jn
)).*abs(besselj(ord+1,Jm))); 

  

  

m1 = (abs(besselj(ord+1,c(1:N_r)))/r_win)';   %% m1 prepares 
input vector for transformation 

m2 = m1*r_win/k_win;                            %% m2 prepares 
output vector for display 

clear Jn 

clear Jm 

  

%new stuff to make the code faster 

     

    m1_inverse = 1./m1;  

    m1_inverse_diag = diag(m1_inverse); %Prepare vector for 
transform 

    m1_diag = diag(m1); 

  

% %========================================================= 

% %Initialize the field (vertical direction for space, 
horizontal for time) 

%================================================ 

NC = 1e-6;%1e-12;%1e-15; %Input quantum noise  

  

u_t = exp(-(1 + 1i*Chirp)*(t/tau).^2);% + NC*u0*randn(1, N_t); 

u_t = u_t + NC*u_t.*randn(1, N_t); 

u_r = exp(-(r/w0).^2- 1i*(k0*r.^2)/(2*f)); 

U0 = u0*u_r*u_t; %Matrix containing the values of the initial 
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complex envelope 

U = U0; 

%u_spec0 = fftshift(fft(fftshift(U0,2), N_t ,2 ),2); 

u_spec0 = fft(U0, N_t, 2); 

%=============Space and time resolution diagnostic============ 

%Test code to make sure I have good resolution in space and time 

figure (1) 

subplot(1,3,1)  

plot(nu, abs(u_spec0(1,:)).^2); 

xlabel('Frequency (THz)'); 

ylabel('Spectral density (a.u.)'); 

% axis([-1, 1, 0, 1]) 

subplot(1,3,2);  

plot( t, abs(U0(1, :)).^2); 

xlabel('Time (ps)'); 

ylabel('Intensity (W/cm^2)') 

% axis([-10, 10, 0, 10]); 

subplot(1,3,3) 

plot(r, abs(U0(:, N_t/2)).^2); 

xlabel('Space (cm)'); 

ylabel('Intensity (W/cm^2)'); 

  

figure (300) 

plot(t, U0(1, :)/max(U0(1, :)), t, atan(real(U0(1, 
:))./imag(U0(1, :)))); 

  



	  

	  
	  

114	  

  

  

% %=====================Main 
calculation============================ 

  

% % Propagate the field through space 

L = 13; %40%Propagation distance in cm   

dz =3.25e-2;%6.5e-2; %Step size in cm 

z_initial = 270; %Used to move the diffraction calculation 
forward 

steps = L/dz; %# of steps 

N_dump = 10;   

dump_counter = 1; 

u_r_0 = u_r; 

u_t_0 = u_t; 

  

  

% 
%===============================================================
====== 

% %  %Main loop for nonlinear pulse propagation 

%===============================================================
======== 

  

  

  

total_length = 0;  

tic;  
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fprintf(1, '\nSimulation running...      '); 

interval = steps/N_dump; 

data = zeros(N_r, N_t, N_dump); 

  

for ii = 1 : steps 

     

    

% =====================dispersion operator 1 
======================== 

   

    %u_spec = fftshift(fft(fftshift(U,2), N_t ,2 ),2);   

     u_spec = fft(U, N_t, 2);  

    disp_k = 1i*b2/2*(2*pi*nu).^2 + 1i*b3/6*(2*pi*nu).^3  + 
1i*b4/24*(2*pi*nu).^4; 

     

     for jj = 1 : size(U,1) 

    u_spec(jj, :) = u_spec(jj, :).*exp(disp_k*(dz)); 

    end 

     

    U = ifft(u_spec, N_t, 2); 

    %U = ifftshift(ifft(ifftshift(u_spec,2), N_t ,2 ),2); 

%===============================================================
====== 

%=================Diffraction operator 
1=============================== 

  

 %This if statement is to start the diffraction calculation at  
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 %another Z location other than Z = 0.   

  

if ii == 1 

U_r = m1_inverse_diag*U;    %prepare vector for transform 

U_kspec = C*U_r;            %Hankel transform  

kk = (-1i*(z_initial)*(2*pi*k_r).^2)/(2*k0);  

U_kspec = diag(exp(kk))*U_kspec; 

U_r = C*U_kspec;                     %Inverse Hankel transform 

U= m1_diag*U_r;                       %prepare matrix for 
display 

end                                       

  

                                          

U_r = m1_inverse_diag*U;    %prepare vector for transform 

U_kspec = C*U_r;            %Hankel transform   

  

kk = (-1i*(dz)*(2*pi*k_r).^2)/(2*k0);     

U_kspec = diag(exp(kk))*U_kspec; 

U_r = C*U_kspec;                     %Inverse Hankel transform 

U= m1_diag*U_r;                       %prepare matrix for 
display 
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%===============================================================
===== 

  

  

  

%==================Nonlinear operator 
================================ 

    

for jj = 1 : size(U,1) 

    %U(jj, :) = U(jj, :).*exp(1i*(n2*k0*((abs(U(jj, 
:))).^2)*(dz)) - (beta_k/2)*(abs(U(jj, :))).^(2*(K-1))*dz); 

    ie_spec = fft(U(jj, :).*abs(U(jj, :)).^2, N_t); 

    i_spec = fft(abs(U(jj, :)).^2, N_t); 

    U_spec = fft(U(jj,:), N_t); 

    rconv = ifft(hrw.*i_spec, N_t); 

    rr = fft(U(jj,:).*rconv, N_t); 

     

     

    K_NLfd = 1i*dz*n2*k0*((1-fr)*ie_spec +fr*dt*rr); 

    K_NLfd = (1 + (nu/nu_0)).*K_NLfd;  

    U_spec = U_spec + K_NLfd; 

    U(jj, :) = ifft(U_spec, N_t); 

    U(jj, :) = U(jj, :).*exp(-dz*(beta_k/2)*(abs(U(jj, 
:))).^(2*(K-1))); 

end 
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%===============================================================
=====    

   

  

  if mod(ii, interval) == 0 

      data(:, :, ii/interval) = U; 

  end 

  

     

  

total_length = total_length + dz; 

    fprintf(1, '\b\b\b\b\b\b%5.2f%%', total_length * 100.0 /L ) 

  

  

end 

%  

final_lineout_center_cylindrical;  

radial_evolution;  
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Appendix C 

MATLAB code to calculate the uncertainty of best fit lines for nonlinear refractive index 

measurements in atomic and molecular gases. 

close all; 

clear all; 

clc;  

  

 

file1 = sprintf('5-17-16_S1/minus15inHg_Kr_751pm'); 

file2 = sprintf('5-17-16_S1/minus15inHg_He_729pm'); 

  

 

path1 = 
strcat('/Users/jeremypigeon/Documents/Science/Experimental 
data/data 2016/2016 Large Bunker Data/', file1); 

path2 = 
strcat('/Users/jeremypigeon/Documents/Science/Experimental 
data/data 2016/2016 Large Bunker Data/', file2); 

data1=load(path1); 

one = data1; 

data2=load(path2); 

two = data2; 

  

ii = 1; 

n = size(data1,1); 

Rmax = 10;  %Maximum allowed ratio between lambda1 and lambda2 
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while ii < n+1 ; 

  

  if data1(ii,4) <Rmax^(-1) || data1(ii,4) > Rmax 

     

      

      data1(ii,:) = []; 

      n = n - 1; 

  end 

   

  ii = ii +1; 

end 

  

ii = 1; 

n = size(data2,1); 

  

while ii < n +1; 

  

  if data2(ii,4) <Rmax^(-1) || data2(ii,4) > Rmax 

     

      data2(ii,:) = []; 

      n = n - 1;  

  end 

  ii = ii + 1;  

end 

%Note that data(:,3) is 10.27 um and data(:,2) is 10.59 um 

%Converting everything to real energy units: 
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%FWM signal from volts to uJ 

data1(:,1) = data1(:,1)*1e3;  %volts to mV 

data1(:,1) = data1(:,1)*(2.2/15); %2.2 pJ/15 mV for LN2 HCT 

data1(:,1) = data1(:,1)*1e-6;  %converting from pJ to uJ 

data1(:,1) = data1(:,1)/1.2e-3; % In uJ factor is attenuation 
through spect. 

  

data2(:,1) = data2(:,1)*1e3;  %volts to mV 

data2(:,1) = data2(:,1)*(2.2/15); %2.2 pJ/15 mV for LN2 HCT 

data2(:,1) = data2(:,1)*1e-6;  %converting from pJ to uJ 

data2(:,1) = data2(:,1)/1.2e-3; % In uJ 

  

%================================ 

%2.34 is the attenuation at 10.93 µm for the 2 mm CaF2  

%(only noble gas measurements) 

  

data1(:,1) = data1(:,1)*2.34; 

data2(:,1) = data2(:,1)*2.34; 

  

%================================= 

  

%Lambda1 and Lambda2 from mV to uJ 

data1(:,2) = data1(:,2)*607e3; %(543.2e3 uJ/V)  

data2(:,2) = data2(:,2)*607e3;% (1517 uJ/V) 2/16/16 meas. 
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data1(:,3) = data1(:,3)*856.5e3; %1517.6e3;  after taking CaF2 

data2(:,3) = data2(:,3)*856.5e3;%1517.6e3; into account 

  

y1 = data1(:,1); 

y2 = data2(:,1); 

  

x1 = (data1(:,2).^2).*data1(:,3); 

x2 = (data2(:,2).^2).*data2(:,3);  

%   

%   x1 = data1(:,3); 

%   x2 = data2(:,3);  

%    

  figure (1) 

   

  [fit1, gof1] = fit(x1, data1(:,1), 'poly1'); 

  [fit2, gof2] = fit(x2, data2(:,1), 'poly1'); 

  

  hold on   

  plot(fit1, x1,  data1(:,1),'o') 

  plot(fit2, x2, data2(:,1),'x'); 

  leg = legend(file1, 'Fit1', file2, 'Fit2'); 

  %set(leg, 'Interpreter', 'none');  %turns Matlab Latex 
interpreter off 

   

  title(sprintf('R_m_a_x=%6.3g; m_1 = %6.3g, m_2 = %6.3g',Rmax, 
fit1.p1, fit2.p1)); 
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  %axis([0 5e-5 0 3]) 

  ylabel('W_1_0_._9 (\muJ)'); 

  xlabel('W_1_0_._6^2 W_1_0_._3 (\muJ^3)'); 

   

%Code to look at uncertainty in slope 

cf = fit2; 

cf_coeff = coeffvalues(cf); 

cf_confint = confint(cf); 

a = cf_coeff(1); 

b = cf_coeff(2); 

a_uncert = (cf_confint(2,1) - cf_confint(1,1))/2; 

b_uncert = (cf_confint(2,2) - cf_confint(1,2))/2; 

   

sigma = (a_uncert/2)/cf.p1 

  

  

b3 = 5.737e2;  %Prop constant in mm-1 

A3 = 12.57;    %Area of stokes beam mm^2 

I = 868.39;   %Result of numerical integration in mm^-4 

tau = 197e-12;  %pulse length in picoseconds 

  

del_m = fit1.p1 - fit2.p1;  %Slope difference in uJ^-2; 

  

del_m = del_m*1e12; %converting units to J^-2; 

  

n2 = sqrt(sqrt(3)*del_m/A3)*tau/(b3*I); 
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n2 = n2*1e-2 
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Appendix D 

Cascaded Quadratic Nonlinearities 

Phase-mismatched second-order nonlinear optical processes can create an effective nonlinear 

phase shift similar to the one produced via the third-order nonlinearity SPM.  This was first 

recognized theoretically in 1967 [7] and has been observed experimentally as early as 1972 in 

mid-IR four-wave mixing experiments in GaAs [8]. However, it was only when this process was 

studied in detail in near-IR nonlinear index measurements of KTP [9] that this subject has 

become a mainstream part of contemporary nonlinear optics research [e.g. 10, 11]. In this 

situation, the total nonlinear index is modified by cascaded quadratic nonlinearities as: 

                                                      𝑛!,!"" = 𝑛! ± 𝑛!,!"#!.      (D.1) 

Where 𝑛!,!"#! is the change in the nonlinear index from cascaded quadratic nonlinearities.  This 

nonlinearity can be positive (self-focusing) or negative (self-defocusing) and its magnitude is a 

function of the phase-mismatch 𝛥𝑘.  This nonlinearity can arise from any three-wave mixing 

process and can play an important role in materials with large second-order nonlinearities.  

Semiconductors that will be studied in this thesis have a formidable second-order nonlinearity.  

Although nonlinear phase shifts can arise from any three-wave mixing process, only 

cascading from second harmonic generation has been studied experimentally [8 – 10]. In this 

situation, the correction to the third-order nonlinearity can be derived using coupled wave 

analysis.  Using equation (2.5) of Chapter 2 the differential equation governing the fundamental 

field is: 

                               !
!"
ℰ 𝜔! ≈ − !!!!!!!!

!! !!
𝑃!" 𝜔! exp−𝑖𝜔!𝑡 + 𝑖𝑘 𝜔! 𝑧   (D.2) 
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The nonlinear polarizability oscillating at the fundamental frequency and describing the 

conversion of second harmonic back to the fundamental field is: 

𝑃!" 𝜔! = !!
!
𝜒 ! 𝜔! = 2𝜔! − 𝜔! ℰ 2𝜔! ℰ∗ 𝜔! exp −𝑖𝜔!𝑡 − 𝑖 𝑘 2𝜔! − 𝑘 𝜔! 𝑧   

(D.3) 

Substitution of Eq. D.3 into Eq. D.2 and contracting the syntax for the second-order 

susceptibility yields the following: 

                                        !
!"
ℰ 𝜔! = − !!!!!!!!

!! !!!
ℰ 2𝜔! ℰ∗ 𝜔! exp 𝑖𝛥𝑘𝑧     (D.4) 

Where 𝛥𝑘 is the phase-mismatch for second harmonic generation defined in equation (2.8) of 

Chapter 2.  Fortunately, we have derived a solution for the second harmonic field for the case in 

which the pump is not depleted in Chapter 2.  Substitution of Eq. 2.9 of Chapter 2 into Eq. D.4 

and using the definition of intensity, 𝐼 𝜔 = !!!!(!)
!

ℰ 𝜔 ℰ∗ 𝜔 , gives the following expression 

for the evolution of the fundamental field: 

 !
!"
ℰ 𝜔! = −𝑖 !!

!
! ! !

!!
!!"!! !! ! !!! !!!!

𝐼 𝜔! ℰ 𝜔! 1− exp 𝑖𝛥𝑘𝑧    (D.5) 

The second term of Eq. D.5 is similar in form to that of Eq. 2.7 and Eq. 2.13.  After integration, 

this part of Eq. D.5 will describe the familiar oscillations of the amplitude of the fundamental 

field related to a finite coherence length. The first term of Eq. D.5, however, is similar in form to 

Eq. 2.17 that is responsible for SPM.  The first term in Eq. D.5 will manifest in nonlinear phase 

changes to the fundamental field where the term ! ! !
!!

!!"!! !! ! !!! !!!!
𝐼 𝜔!  appears as a change 
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to the linear index of refraction.  For this situation, the change to the nonlinear index from 

second-order effects, 𝑛!,!"#!, is: 

                                               𝑛!,!"#! =
!
!"
   !!! ! !

!!!!!!! !! ! !!!
     (D.6) 

The most important difference between the intensity dependent refractive index that arises 

from cascaded quadratic nonlinearities versus the third-order response (see Eq. 2.19) is that its 

magnitude depends on the phase-mismatch 𝛥𝑘.  Equation D.6 is limited, however, in that it 

predicts that the nonlinear index infinity when the phase-match is zero.  In reality, the nonlinear 

index from cascaded quadratic nonlinearities must tend to zero for the case that the three-wave 

mixing process is perfectly phase-matched.  This can be explained by considering a physical 

picture of SPM via phase-mismatched second harmonic generation.   

For a finite phase mismatch, a fraction of the fundamental field will be converted to the 

second harmonic until the field traverses two coherence lengths, upon which the second 

harmonic will convert back to the fundamental field.  Under normal dispersion conditions, 

however, the second harmonic has a larger refractive index than the fundamental field.  As a 

result, the fundamental field will suffer a change in its phase after it is converted back from the 

second harmonic.  Further, since the second harmonic generation process is intensity-dependent, 

these cycles of conversion and back-conversion result in a nonlinear phase shift to the 

fundamental.  Therefore, there is no nonlinear phase shift when the phase matching condition is 

perfect because the second harmonic does not convert back to the fundamental.  

In semiconductors such as GaAs and CdTe, difference frequency generation (DFG) can be 

phase-matched by the anomalous dispersion of the phonon band to produce THz radiation by 
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mixing mid-IR frequencies [12, 13].  This effect may change the observed cubic nonlinearity, 

especially in FWM experiments.   Since this thesis will present experiments on FWM in 

semiconductors it is important to describe this process.    

Considering the case of non-degenerate FWM depicted in Fig. 1b, let the DFG angular 

frequency be denoted by 𝛺 = 𝜔! − 𝜔!.  The nonlinear polarizability for the THz wave is: 

                       𝑃!" 𝛺 = !!
!
𝜒 ! ℰ!ℰ!∗ exp 𝑖[𝜔!𝑡 − 𝜔!𝑡 − 𝑘 𝜔! 𝑧 + 𝑘 𝜔! 𝑧]    (D.7) 

Where ℰ! is the complex envelope at frequency 𝜔! of Fig. 1b.  Note that the THz wave can also 

be generated via 𝛺 = 𝜔! − 𝜔! and 𝛺 = 𝜔! − 𝜔! but these processes will be neglected under the 

assumption that ℰ!,! ≫ ℰ!,!.   Substitution of Eq. D.7 into Eq. 2.5 of Chapter 2 yields the 

following differential equation governing the growth of the DFG frequency: 

                                 !
!"
ℰ 𝛺 = − !!!!!!!

!! !
𝜒 ! ℰ!ℰ!∗ exp−𝑖𝛥𝑘!"#𝑧.    (D.8) 

Where 𝛥𝑘!"#  is the phase-matching condition for DFG, 𝛥𝑘!"# = 𝑘 𝜔! − 𝑘 𝜔! − 𝑘 𝛺 .  

Integrating Eq. D.8 under the assumption that the two pump fields are constant yields: 

   ℰ 𝛺 ≈ !!!!!!
!! !

  ℰ!ℰ!∗

!!!"#
𝑒!!"!!"#! − 1          (D.9) 

Next, we consider how radiation at angular frequencies 𝜔!,! can be generated via three-wave 

mixing.  The most efficient channels are 𝜔! = 𝜔! − 𝛺 and 𝜔! = 𝜔! + 𝛺 for which the nonlinear 

polarizabilities are: 

                        𝑃!" 𝜔! = !!
!
𝜒 ! ℰ!ℰ!∗ exp(𝑖𝜔!𝑡 − 𝑖𝛺𝑡 − 𝑖𝑘 𝜔! 𝑧 + 𝑖𝑘 𝛺 𝑧)   (D.10) 

and, 
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                       𝑃!" 𝜔! = !!
!
𝜒(!)ℰ!ℰ! exp(𝑖𝜔!𝑡 + 𝑖𝛺𝑡 − 𝑖𝑘 𝜔! 𝑧 − 𝑖𝑘 𝛺 𝑧)    (D.11) 

Where ℰ! is the complex amplitude of the THz wave.  It is worth mentioning that the generation 

of light through the nonlinear polarizability in Eq. D.10 should be much more efficient than that 

generated through Eq. D.11 since ℰ! ≪ ℰ!,! ≪ ℰ!,!.  This is because Eq. D.10 describes the 

creation of photons at 𝜔! and 𝛺 by the annihilation of photons at 𝜔!.  In contrast, Eq. D.11 

describes the creation of photons at 𝜔! by the annihilation of photons at both 𝜔! and 𝛺.  We 

should, therefore, expect spectral asymmetry if cascaded DFG plays a role in FWM experiments.   

To understand how cascading quadratic nonlinearities can alter the four-wave mixing process 

we substitute Eq. D.10 into Eq. 2.5 of Chapter 2: 

                             !
!"
ℰ! = − !!!!!!!!

!! !!
𝜒 ! ℰ!ℰ!∗ exp−𝑖𝛥𝑘!"#𝑧 .   (D.12) 

Where 𝛥𝑘!"# is the phase-mismatch for this three-wave mixing process and is given by: 

   𝛥𝑘!"# = 𝑘 𝜔! − 𝑘 𝛺 − 𝑘(𝜔!).     (D.13) 

The final step is to substitute Eq. D.9 into Eq. D.10 and to compare this result with the four-

wave mixing expression of Eq. 2.13.  Substitution of Eq. D.9 into Eq. D.12 yields: 

                        !
!"
ℰ! = − !!!

!! !!

!
!!

!
!! !

[𝜒 ! ]!    ℰ!
!ℰ!∗

!!!"#
𝑒!!"!!"#! − 𝑒!!"!!"#!   .  (D.14) 

Where 𝛥𝑘!"# is the phase-mismatch for four-wave mixing defined by 𝛥𝑘 = 2𝑘 𝜔! −

𝑘 𝜔! − 𝑘 𝜔! .  As can be inferred from above, the evolution of the field at 𝜔! from the 

second-order nonlinearity has two terms.  The second term is the usual three-wave mixing term 

and the first manifests exactly like four-wave mixing from the third-order nonlinearity.   If the 
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complex amplitudes are converted into intensity units then the nonlinear index from this process 

takes the following form: 

                            𝑛!,!"#! =
!

!!!"#

! ! ! !

!!!!!! ! ! !! ! !! !(!!)
.                            (D.15) 

Which is very similar in form to the cascaded second harmonic equivalent presented in Eq. D.6.  

It should be noted that, while cascaded quadratic nonlinearities may manifest as a positive or 

negative change to the nonlinear index, in most situations cascaded quadratic nonlinearities act to 

reduce the intrinsic, third-order nonlinearity. 
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Appendix E 

Simple Derivation of Miller’s Rule to Estimate the Dispersion of the Third-order 

Nonlinearity of Gases 

There are a number of models that have been put forth to estimate the dispersion of the third-

order susceptibility [11, 12]. For gases, the most widely used model is the so-called Miller’s rule 

that was originally developed to estimate the dispersion of the second-order nonlinearity in solids 

[12] and was later extended to estimate the dispersion of the third-order nonlinearity [13]. In this 

section, we present a simple, frequency-domain derivation of the Miller’s rule wavelength 

scaling for the third-order susceptibility. It should be noted that a more rigorous, time-domain 

derivation of Miller’s rule for the third-order susceptibility is presented in references [13, 14]. 

We begin the derivation by considering the equation of motion for a driven anharmonic 

oscillator: 

   !
!

!!!
𝑟 + 𝛾 !

!"
𝑟 + 𝜔!!𝑟 = − !"

!
  .    (E.1) 

Where r is the radial position, 𝛾 is the damping term, 𝜔! is the angular frequency of the 

oscillator, 𝑒 is the charge of the electron, 𝑚  is the mass of the electron and E is the electric field 

of the laser.  Next we allow the radial position to be expressed as a perturbation series,  

𝑟 𝑡 = 𝑟! + 𝛿𝑟! + 𝛿!𝑟!.     

 (E.2) 

Where 𝛿 is a smallness parameter and 𝑟!  represents the nth order of the perturbation series. To 

look for third-order nonlinearities we include a term cubic in the radial position in Eq. E.1 as 

follows,  
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!!

!!!
𝑟 + 𝛾 !

!"
𝑟 + 𝜔!!𝑟 + 𝛿𝑟! = − !"

!
  .    (E.3) 

Next we limit ourselves to self-phase modulation type nonlinearities such that the photon 

conservation of energy argument is 𝜔 = 𝜔 + 𝜔 − 𝜔. This ensures that all terms in Eq. E.3 

oscillate at angular frequency, 𝜔, thereby allowing us to express Eq. E.3 as: 

𝜔!  𝑟 − 𝑖𝜔𝛾𝑟 + 𝜔!!𝑟 + 𝛿𝑟! = − !!
!

.    

 (E.4) 

Where the tilde denotes the Fourier transform and we have assumed that time derivatives can be 

replaced by – 𝑖𝜔. Next, we substitute the frequency-domain version of Eq. E.2 into Eq. E.4 

yielding, 

𝜔!   𝑟!   + 𝛿𝑟! + 𝛿!𝑟! − 𝑖𝜔𝛾 𝑟!   + 𝛿𝑟! + 𝛿!𝑟! + 𝜔!! 𝑟!   + 𝛿𝑟! + 𝛿!𝑟! + 𝛿 𝑟!   + 𝛿𝑟! +

𝛿!𝑟! ! = − !!
!
  .             (E.5)  

Neglecting higher-order terms and solving Eq. E.5 for the zeroth order term results in the 

familiar Lorentzian lineshape function,  

𝑟! = −
!!
!

!!!!"#!!!!
= − !!

!
𝑍 𝜔 .    (E.6) 

To solve Eq. E.5 for the first order perturbation, we neglect higher order terms yielding, 

𝜔!   𝛿𝑟! − 𝑖𝜔𝛾 𝛿𝑟! + 𝜔!! 𝛿𝑟! + 𝛿(𝑟!!) = 0.   (E.7) 

By substituting Eq. E.6 into Eq. E.7 we are able to solve for the first-order perturbation,  

𝑟! = − !!
!

!
𝑍 𝜔 !.      (E.8) 
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Using the definition of the polarizability, 𝑃(𝜔), in the frequency domain as  

𝑃 𝜔 = −𝑁𝑒𝑟 𝜔 = 𝑃! 𝜔 +   𝑃! 𝜔 +⋯     (E.9) 

it is possible to relate the polarizability to the radial coordinate such that the polarizability 

becomes: 

    𝑃 𝜔 = −𝑁𝑒 − !!
!
𝑍 𝜔 − 𝛿 !!

!

!
𝑍! 𝜔 +⋯   .   (E.10) 

The first order term, related to the linear response, is defined as 𝑃! 𝜔 = 𝜖!𝜒 ! 𝜔 𝐸(𝜔)  such 

that the first-order susceptibility is given by: 

𝜒 ! 𝜔 = !!!

!!!
𝑍 𝜔 .      (E.11) 

The third-order polarizability is defined as 𝑃! 𝜔 = 𝜖!𝜒 ! 𝜔 𝐸(𝜔)𝐸(𝜔)𝐸(𝜔) such that the 

third-order susceptibility can be expressed as: 

𝜒 ! 𝜔 = !!!

!!!! 𝑍! 𝜔 .      (E.12) 

Finally, by comparing Eq. E.11 and Eq. E.12 we can express the third-order susceptibility in 

terms of the first-order susceptibility as: 

𝜒 ! 𝜔 = !!!
!!!!

𝜒 ! 𝜔
!
.     (E.13) 

The above is a succinct form of Miller’s rule [13] for the third-order polarizability. A more 

general form, allowing any four-wave mixing process can be expressed as: 

𝜒 ! 𝜔! = 𝜔! + 𝜔! + 𝜔! = !!!
!!!!

𝜒 ! 𝜔! 𝜒 ! 𝜔! 𝜒 ! 𝜔! 𝜒 ! 𝜔! .  (E.14) 
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The above predicts that the nonlinear susceptibility is less dispersive than the first-order 

susceptibility. For the atomic and molecular gases considered in Chapter 4 of this dissertation, 

Miller’s rule predicts that the nonlinear index of refraction should change by 1 – 2 % when 

changing the driving laser wavelength from 1 to 10 µm.  
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